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Abstract A combined physico-mechanical approach to research and modeling of forming processes for metals
with predictable properties is developed. The constitutive equations describing large plastic deformations under
complex loading are based on both plastic flow theory and continuum damage mechanics. The model which
is developed in order to study strongly plastically deformed materials represents their mechanical behavior
by taking micro-structural damage induced by strain micro-defects into account. The symmetric second-rank
order tensor of damage is applied for the estimation of the material damage connected with volume, shape, and
orientation of micro-defects. The definition offered for this tensor is physically motivated since its hydrostatic
and deviatoric parts describe the evolution of damage connected with a change in volume and shape of micro-
defects, respectively. Such a representation of damage kinetics allows us to use two integral measures for
the calculation of damage in deformed materials. The first measure determines plastic dilatation related to
an increase in void volume. A critical amount of plastic dilatation enables a quantitative assessment of the
risk of fracture of the deformed metal. By means of an experimental analysis we can determine the function
of plastic dilatation which depends on the strain accumulated by material particles under various stress and
temperature-rate conditions of forming. The second measure accounts for the deviatoric strain of voids which
is connected with a change in their shape. The critical deformation of ellipsoidal voids corresponds to their
intense coalescence and to formation of large cavernous defects. These two damage measures are important for
the prediction of the meso-structure quality of metalware produced by metal forming techniques. Experimental
results of various previous investigations are used during modeling of the damage process.
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1 Introduction

Many technological processes of metalware production are based on the combination of forming operations
(deformation processing) and heat treatment. The operating characteristics of finished products are substantially
defined by the mechanical and micro-structural properties of the materials. A leading role in the technological
creation of optimized mechanical and micro-structural properties of the materials of finished products is
played by forming operations. Using models of metal forming processes successfully helps solving problems
appearing during development of state-of-the-art production techniques.

A combined physico-mechanical approach based on the study of both mechanical and micro-structural
properties amounting to important technological parameters of strained metals is developed for the analysis of
forming processes. This approach is founded on advanced methods of plasticity theory which include physico-
mechanical models of strained materials, methods for calculation of associated stress and strain rate fields,
and methods for determination of mechanical and micro-structural parameters related to technological and
operational characteristics of finished components.

It should be noted that the mathematical and the applied theory of plasticity was developed based on
conceptual aspects of continuum mechanics. Basic equations and models in classical plasticity theory [15]
describe a mechanical behavior of deformed solids without taking their micro-structural properties (i.e., para-
meters of the meso-structure, such as void growth and coalescence, polycrystalline unit grain size, volume
fraction of heterogeneous phases, internal energy of hardening, healing of meso-defects at elevated strain tem-
peratures, etc.) into consideration. The mechanical characteristics of materials depend on deformation process
parameters (e.g., strain extent, rate, and temperature; stress-strain state) and they are determined on the basis of
macro-experiments for macro-samples [17]. Mechanisms of micro-structural behavior of deformed materials
are not studied in macro-experiments.

Investigations in the field of technological mechanics have shown that operational properties of machine
components (e.g., the ability to withstand high strain rates or intense thermal and physico-chemical loads)
depend not only on macro-mechanical but also micro-structural characteristics of their materials. In this context
there is a necessity for the development of a combined physico-mechanical approach to an understanding
and modeling of deformation processes of materials. The model for deformed materials should describe
their mechanical behavior taking micro-structural characteristics (e.g., damage by strain micro-defects) into
consideration. The formulation of the models as well as defining constitutive equations for deformed and
damaged materials with predictable micro-structural and mechanical properties require complex experimental
studies of the material characteristics depending on the parameters of the deformation processes.

In the publications dedicated to a comprehensive physico-mechanical approach similar to the one presented
in this paper great attention is given

• to the development of a theory of elastic-viscoplastic deformations of crystalline solids (e.g., [4,24,38]);
• to studies on meso-structural levels of deformation (e.g., [13,29]);
• to a methodology of the underlying physics in continuum mechanics terms as a construction base for

material models with meso-structural properties (e.g., [1,8]);

Less attention is given to the development of the theory of plastic flow of solids when subjected to large finite
strains under complex loading together with a meso-mechanical approach to damage, i.e., effect of grain size,
dislocation ensembles, coalescence of voids, etc.

The theory of polycrystal plastic flow finds an application for research and modeling of metal forming
procedures where target properties develop under large finite strains. The use of plastic flow theory is of
particular current interest for an understanding of the processes during three-axial deformation with strong
variation of stress conditions both in time and within the plastically deformed regions. The combined use of
plastic flow theory and basic concepts of continuum damage mechanics allows us to study the change of the
ductile properties of processed materials during deformation in view of many factors including nucleation,
propagation, growth, coalescence, and possible healing of strain micro-defects. This analysis enables one to
predict accurately the strain damage for deformed materials. It is essential when manufacturing metalware to
be used under high and intense loads.

Such combined methods were developed in some previous works. Kolmogorov et al. [21] and Bogatov [3]
studied the processes of rolling, dragging, and drawing of metallurgical blanks and predicted the correspon-
ding strain damage. Gelin [12] presented finite element models of damage for bulk and sheet metal forming
processes. Tang et al. [33] used a tensor measure of damage for predicting the material fracture during sheet
metal stamping. Xiang and Wu [39] analyzed and simulated superplastic forming of Al-alloys using a void
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damage criterion. Pirondi et al. [30] predicted fracture of low-alloy steels subjected to cyclic plastic loading
on the basis of continuum damage mechanics models. On the basis of both plastic flow theory and dissipative
damage mechanics Makarov et al. [26] studied isothermal super-plastic extrusion of solid shapes made of
carbon steels (C: 0.75–1.75%).

In the present work the authors use an integrated approach for research and modeling of plastic deformation
of metals subjected to complex loading. It is based on plastic flow theory and tensor theory of strain damage.
This approach involves determination of consistent stress and plastic flow velocity fields under complex loading
conditions using enhanced models of processed materials. It is particularly appropriate for the analysis and
design of non-stationary and high-speed forming processes with strong variation of stress and strain rate
conditions.

The modeling of deformation processes for materials with predictable structural and mechanical proper-
ties is based on the fundamental equations of continuum mechanics, rheological correlations to describe the
properties of solids depending on the deformation, and on experimental data for the formulation of boundary
conditions in arising problems of plasticity theory.

2 Basic equations of metal plastic flow

Plastic strains in deformed metals amount to 70–90% being ≈ 102 larger than elastic strains in metal forming
processes (e.g., drawing, die forging, extrusion). Thus, the deformed material is considered as a rigid-plastic
solid whose yield strength depends on strain, strain rate, and temperature, as well as the parameters of the
mesoscopic structure. The calculation of stress-strain state and related parameters of forming processes by
using the model of rigid-plastic solids leads to quite satisfactory results corresponding to experimental data. The
evolution of strain damage results in plastic dilatation. According to test data plastic dilatation of engineering
materials does not exceed 2–5 % even at large processing deformations. This fact enables one to make an
assumption concerning the materials incompressibility when determining the fields of plastic flow velocities.

The equations relevant for a description of plastic flow of solids (in orthogonal curvilinear coordinates
xi , i = 1, 2, 3) are:

• equilibrium of forces (∇ j covariant differentiation; σ i j contravariant components of the stress tensor;
ρ density of the material; ai , Fi contravariant components of acceleration and external force density,
respectively):

∇ jσ
i j = ρ

(
ai − Fi

)
, (1)

• incompressibility condition (υi contravariant components of velocity):

∇iυ
i = 0, (2)

• yield condition (ei j covariant components of the deviatoric strain; T thermodynamic temperature; χs para-
meters related to the local deformation by nonholonomic correlations; µk physico-structural parameters):

f
(

si j , ei j , T, χs, µk

)
= 0, (3)

• associated flow rule (λ̇ a positive scalar proportional to plastic strain force; si j contravariant stress deviator
components; t time; ėi j covariant components of the deviatoric strain rate):

ėi j = λ̇
∂ f

∂si j
, (4)

• rate equations for the physico-structural parameters:

dµk

dt
= µ̇k

(
σ i j , ei j , T, χs, µk

)
. (5)
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More explicitly we may write (Γ i
k j denote the Christoffel symbols, cf., [22]):

∇ jσ
i j = ∂σ i j

∂x j
+ σ k jΓ i

k j + σ ikΓ
j

k j ,

∇iυ
i = ∂υi

∂xi
+ υkΓ i

ik, ai = ∂υi

∂t
+ υ j

(
∂υi

∂x j
+ υkΓ i

k j

)
, (6)

ėi j = 1

2

(
∂υi

∂x j
+ ∂υ j

∂xi
− 2υkΓ

k
i j

)
.

For orthogonal coordinates the non-vanishing Christoffel symbols can be calculated with the following for-
mulae (Hi are parameters related to the metric tensor, gi j , namely Hi = √

gii ):

Γ i
i j = 1

Hi

∂Hi

∂x j
, Γ i

j j = − Hj

H2
i

∂Hj

∂xi
. (7)

The six equations shown in (4) are not mutually independent. They can be reduced to three so-called
coaxiality equations for the deviators of the strain rate and of the stresses (i.e., coincidence of their principal
axes):

ėi j

σi j
= ėi i − ė j j

σi i − σ j j
≡ ėi i − ė j j

sii − s j j
, i, j = 1, 2, 3, i �= j (8)

and a condition of similarity between these deviators

φė = φσ , (9)

where φė and φσ denote the deviator phase angles (Lode angles) which are defined by the following equations:

cos (3φė) = −3
√

3I3
(
ėi j

)

2I 3/2
2

(
ėi j

) , cos (3φσ ) = −3
√

3I3
(
si j

)

2I 3/2
2

(
si j

) , (10)

where I2
(
ėi j

) = ė2, I2
(
si j

) = s2, and I3
(
ėi j

)
, I3

(
si j

)
are second and third invariants of the strain rate and

stress deviators, respectively.
In what follows a yield criterion of the von Mises type will be used (τs is the yield stress under shear, see

also Eq. (19) below):

f
(

si j , ei j , T, χs, µk

)
= 1

2
si ·
· j s

j ·
·i − τ 2

s

(
ei j , T, χs, µk

) = 0. (11)

For the parameters χs , which are associated with the deformation, the intensity of shear strain rate, Λ̇, and
the cumulative shear strain, Λ, or Odquist parameter, are used:

Λ̇ =
√

2ėi ·· j ė
j ·
·i , Λ =

∫

s(t)

√
2ėi ·· j ė

j ·
·i dt, (12)

where ėi ·
· j denote the mixed components of the strain rate deviator. The parameters Λ̇ andΛ are connected by

the non-holonomic equation dΛ
/

dt = Λ̇. For each strain path, s (t), the parameter Λ can be determined by
integration according to Eq. (12) provided that strain rates ėi ·

· j are known.
As physico-structural parameters µk we will specifically choose a micro-defect damage parameter ω,

the grain size D of the polycrystal, and the energy characteristic u(µ) of irreversible changes of the crystal
lattice (viz., a density of the internal energy of hardening, uh). The afore-mentioned structural properties of
engineering materials have a significant influence upon the operating characteristics of finished products.

The analysis of spatial stress and velocity fields dependent on mechanical and structural properties of
deformed metals is based on a solution of the combined basic Eqs. (1)–(5) using the technique of yield zone
mapping in deviatoric stress space [35], which will be explained in greater detail in the second part of this
paper.
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3 Associated law of metal plastic flow

The equation for the yield surface (3) together with the flow rule (4) determine an associated law of metal plastic
flow. Plastic flow of strained materials is accompanied by rate effects and a structural change that substantially
affects the technological parameters and working characteristics of the final products. Rate effects, such as
inertial stress, thermal flux, or rate hardening and structural changes are satisfactorily described by the yield
surface (3). The flow rule (4) establishes correlations between the strain rate ėi j (or the increments dei j ), the
strains ei j , and the stresses si j for large plastic deformations.

The structure of the flow rule (4) satisfying the yield condition (3) is determined from the principle of
maximum power of deformation (Hill 1948):

dλ = λ̇ dt = h d′ f, (13)

where h > 0 is a function of various parameters that define the physico-mechanical conditions of the material.
Moreover, d′ f is the differential of the yield function ( f = 0) provided that the strain increments vanish, i.e.,
dei j = 0, in contrast to the total differential d f of the yield function (consistency condition):

d f = ∂ f

∂si j
dsi j + ∂ f

∂ei j
dei j + ∂ f

∂T
dT + ∂ f

∂χs
dχs + ∂ f

∂µk
dµk = 0. (14)

By combination of Eqs. (4) and (13) we obtain dei j = h ∂ f
∂si j d′ f . Provided that strain increments are zero,

i.e., dei j = 0, the differential of the yield surface is given by:

d′ f = ∂ f

∂si j
dsi j + ∂ f

∂T
d (T −�Ts)+ ∂ f

∂µk
d′µk > 0, (15)

where �Ts is a temperature increment related to the dissipated power density ẇ = dw
dt

= si j ėi j (w denotes
the density of the work of deformation); d′µk is a differential of physico-structural parameters not related to
the deformations ei j . Note that the inequality d′ f > 0 implies a condition of active loading, i.e., of further
continuation of plastic deformation.

From Eqs. (13)–(15) it follows that

dλ

h
+ ∂ f

∂ei j
dei j + ∂ f

∂T
d (�Ts)+ ∂ f

∂χs
dχs + ∂ f

∂µk

(
dµk − d′µk

) = 0. (16)

The differentials d (�Ts), dχs , dµk − d′µk are related to the strain increments dei j as follows:

d (�Ts) = Ksdei j , dχs = Asdei j , dµk − d′µk = Bsdei j (17)

where Ks, As, Bs are functions of the physical and mechanical parameters of materials.
Equation (16) is now combined with Eq. (17) to yield:

dλ

h
+

(
∂ f

∂ei j
+ Ks

∂ f

∂T
+ As

∂ f

∂χs
+ Bs

∂ f

∂µk

)
dei j = 0. (18)

By virtue of the associative flow rule (4) the scalar h can now be identified:

h = −
(
∂ f

∂ei j
+ Ks

∂ f

∂T
+ As

∂ f

∂χs
+ Bs

∂ f

∂µk

)−1 (
∂ f

∂si j

)−1

. (19)

The von Mises yield function (11) will be used for finding the scalar dλ = hd′ f . The corresponding
determination procedure for this function is outlined below. Experiments have been performed and examined
in order to determine the von Mises yield function (11). The experimental data indicate a strong effect of strain,
temperature, strain rate, and of the material physico-structural properties on the yield point, i.e.,:

σs = τs
√

3 = σs (ei , ėi , T, µk) , (20)

where ei = Λ/
√

3 denotes the equivalent strains, i.e., an intensity (note the index i in ei ) of cumulative strains,
and ėi = Λ̇/

√
3 is the corresponding intensity of strain rates.
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Fig. 1 Isothermal hardening curves

The dependence (20) is represented by the hypersurface ( f = 0) for each material in the space
(σs, ei , ėi , T, µk). The hypersurface f = 0 can be specified for each material by means of supporting curves
to be constructed by means of the experimental database for various strain conditions. Based on experimental
data the following mathematical form of non-isothermal hardening curves was established:

σs = σ (is)s exp

[
−α

(
T − T0

Tmax − T0

)q]
, (21)

where σ (is)s = σ
(is)
s (ei , ėi0, T0, µk) refer to isothermal hardening curves obtained for various materials at a

fixed strain rate ėi0 and an initial temperature T0, cf., Fig. 1. Tmax is the maximum temperature of the process,
α and q are parameters used in the equation for the temperature dependent yield strength σs.

Uniaxial compression tests have been made on compound cylindrical specimens in order to obtain hardening
curves for the investigated metals under isothermal conditions (cf., Fig. 1). Each compound specimen consisted
of three identical cylindrical specimens. Plastic compression of the compound specimen allows attaining large
deformations equivalent to those during metal forming processes.

The character of temperature dependence for the yield stress σs (T ) can be described by a decrease in the
activation energy, i.e., by a decrease in the energy threshold required for the movement of dislocations as a result
of thermal fluctuations. Note that the power dependence in (21) can also be motivated from basic principles of
thermodynamics for deformed metals [40,41]. The construction of non-isothermal curves for materials with
changing microstructure is a rather complex problem. It becomes complicated due to the necessity to determine
values T, α, q which depend on initial conditions and on the strain path s. The change in temperature, T , relates
to both the effect of thermal flux due to the deformation of the material and to the addition or removal of heat
as part of the material processing.

The various parameters included in Eq. (21) are determined as follows. The dependency of the isothermal
yield point on strain can be approximated by an exponential three-parameter fit:

σ (is)s = σ0.2 + Be(n0−n1ei )
i , (22)

where σ0.2 denotes the initial yield point and B, n0, n1 are strain hardening parameters which can be found by
the experimental curve.

During polycrystalline deformation the initial material yield point depends on the grain size. This depen-
dence can be physically explained as grain-to-grain strain transfer and it can be quantified by the Hall-Petch
correlation [40]:

σ0.2 = σ0 + ky D− 1
2 , (23)

where D is an average grain diameter, σ0 characterizes a resistance of the movement of free dislocations, and
ky is a measure proportional to the stress σd required for the movement of locked dislocations and depending
on the dislocation arrangement of the metal, i.e.,:

ky = σdl
1
2 , (24)
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Fig. 3 Relationship between stress σd and damage ω during deformation of low-carbon low-alloy steel (C: 0.08–0.20 %, Cr:
0.15–0.30 %)

where l indicates an average distance between the grain boundary and the nearest dislocation source. Equa-
tion (23) is in agreement with experimental data given by Yokobori [40] and obtained during uniaxial tension
of low-carbon low-alloy steel specimens (cf., Fig. 2). Its form can also be motivated by basic correlations for
the dislocation content as shown by Yokobori [40]. The yield points for steels with sub-grain sizes D varying
in between 0.0005 and 0.0006 mm can be found by a modified Hall-Petch correlation:

σ0.2 = σ0 + ky D− 1
2 + k∗

y D−1, (25)

where k∗
y denotes a material constant for specified conditions which depends on the structure of sub-boundaries.

Based on experiments a relation between the stress σd required for the movement of locked dislocations
and the measure ω of damage by strain micro-defects can be established (cf., Fig. 3):

σd = σd/ω=0 + Aωm, m =
ln

σ
(2)
d − σd/ω=0

σ
(1)
d − σd/ω=0

ln ω(2)

ω(1)

, A = σ
(1)
d − σd/ω=0

ω(1)
m = σ

(2)
d − σd/ω=0

ω(2)
m . (26)

where, as indicated, A and m are material constants which have been found by three control points
0

(
ω = 0; σd/ω=0

)
, 1

(
ω(1); σ 1

d

)
, and 2(ω(2); σ (2)d ) of the empirical curve shown in Fig. 3.

In order to determine the function σd (ω) experimentally two-stage tension tests were carried out with
pre-annealed specimens made of low-carbon low-alloy steel. The damage measure, ω, and the dislocation
content, ρ∗, were quantified after each stage. The damage measure ω was found by a technique outlined in
Sect. 4.1 of the present paper. The dislocation content ρ∗ was estimated on the basis of X-ray crystal analysis.
Then the stress σd was calculated via the known dependence σd (ρ∗), [40]. The experimental results obtained
for the function (26) are given in Table 1.
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Table 1 Experimental parameters of the function σd (ω) for low-carbon low-alloy steels

Stages of Damage Dislocation content, Stress, σd, MPa Material constants
the deformation measure, ω ρ∗, cm−2

A, MPa m

Initial state (point 0) 0 108 265 157 1.40
First stage of deformation (point 1) 0.26 109 289
Second stage of deformation (point 2) 0.66 1011 353

T

1

2

ln
( σ

s
/ σ

s (
is

) )

0.5 Tmax maxT0 T

1

0

2

Fig. 4 Representation of the temperature dependence (21) in the plane ln(σs/σ
(is)
s ) vs. T : 1 linear relation (q = 1), 2 allowing

for physico-structural changes (q > 1)

The power law dependence of the stress σd on the damage ω is motivated by an increase in dislocation
density ρ∗ during plastic flow of the material. However, for a more reliable substantiation of the relation (26)
it is necessary to verify it experimentally for a number of structural metals.

Consequently, after insertion of Eqs. (23)–(26) we may write for the isothermal yield point of Eq. (22):

σ (is)s = σ0 + (
σd/ω=0 + Aωm)

D− 1
2 l

1
2 + Be(n0−n1ei )

i . (27)

The parameters α and q appearing in Eq. (21) can be determined by three control points of the experimental
temperature curve σs(T ) : 0 (σs0, T0) , 1 (σs1, T1), and 2 (σs2, T2), shown in Fig. 4.

q = ln ln(σs2/σs0)
ln(σs1/σs0)

ln
(
�T̄2

/
�T̄1

) , α = − ln
(
σs1

/
σs0

)

�T̄ q
1

= − ln (σs2/σs0)

�T̄ q
2

, (28)

where �T̄ = �T
/
�Tmax = (T − T0)

/
(Tmax − T0).

For q = 1 the relation (21) results in a straight line within the plane ln(σs/σ
(is)
s ) vs. T (cf., Fig. 4). However,

experimental research on the temperature dependence for mechanical characteristics of some constructional
carbon and alloyed steels have shown that physico-structural changes, in particular, temperature allotropy
related to lattice rearrangement, result in a non-linear relation ln(σs/σ

(is)
s )(T ). In this case, the parameter q ,

which allows for polymorphic transformations in processed material, is greater than 1.
It is convenient to express Eq. (21) as follows

σs = σ (is)s exp
(−α�T̄ q)

, (29)

The rheological dependence (21) quite satisfactorily describes the change of the yield stress during plastic
deformation for many structural metals used in mechanical and aeronautic engineering. The temperature
dependence of the yield stress is deduced from the fundamental equations of thermodynamics for deformed
metals [41]. Clearly, new engineering metallic materials are constantly being developed, and a study of their
rheological behavior under plastic deformation will require a generalization of the dependence (21) or even
use of essentially new models. This remark is also relevant for the experimentally established Eq. (26) for the
stress required for the movement of locked dislocations.
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The increase in temperature of the material due to the dissipation of forming energy can be determined
from the following energy relation:

dw = cρ dT + du(µ), (30)

wherew denotes the density of the work of deformation, c is the specific heat and u(µ) is an internal dissipation
of the energy related to changes in the structural parameters µk . According to Eq. (30) not all of the work
associated with plastic deformation is converted into heat. Part of it is spent on the change of the structure
of the material. Thus, the density of the internal energy (uh) required for hardening is taken as a measure of
internal dissipation of the energy, i.e., u(µ) = uh. Its increment is related to an increment of the density of the
deformation work, according to duh = k(uh)dw with a conversion factor k(uh) = 0.1–0.15. The factor k(uh)

was experimentally determined by [2] as the difference between supplied work of deformation and heat energy
generated due to plastic dissipation. The heat energy was quantified by calorimetric tests. As a result, Eq. (30)
becomes:

(
1 − k(uh)

)
dw = cρ dT, (31)

By setting dwi = σi dei = σs dei we obtain:

dT =
(
1 − k(uh)

)
σi

cρ
dei . (32)

The temperature dependence for the specific heat (cf., Fig. 5) can be approximated as follows

c = c0 exp
(
β�T̄ s) , (33)

where c0 is the specific heat at the initial temperature T0 and β, s are parameters which have been found by
three points 0 (c0, T0) , 1 (c1, T1), and 2 (c2, T2) of the experimental curve for the specific heat shown in
Fig. 5:

s = ln ln(c2/c0)
ln(c1/c0)

ln
(
�T̄2

/
�T̄1

) , β = ln
(
c1

/
c0

)

�T̄ s
1

= ln
(
c2

/
c0

)

�T̄ s
2

. (34)

For calculations it is convenient to choose control points with the coordinates�T̄0 = 0,�T̄1 = 0, 5,�T̄2 =
1 that are sufficiently distant from each other.

The parameters required for the construction of non-isothermal hardening curves are presented in Table 2
for some plastically deformable materials.

The values of these parameters can vary over some interval due to scattering of the structural and mechanical
properties of deformed metals under as-delivered conditions. The applied experimental methods (e.g., X-ray
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diffraction, electron microscopy, dilatometry, differentially-thermal method, etc.) have a very high accuracy
of measurement of material constants. However, a combined use of all these methods during the determination
of the material constants in constitutive equations for the stresses and strains might influence the accuracy
in a negative manner. How much this is exactly could be determined inversely by applying these constitutive
equations to complex forming experiments numerically and – under the assumption that, in principle, these
equations describe the material properly – by comparison of the simulations to actual experiments.

In view of σi = σs and substituting σs and c from Eqs. (29), (33) to Eq. (32) we have:

dT =
(
1 − k(uh)

)
σ
(is)
i exp

(−α�T̄ q
)

c0ρ exp
(
β�T̄ s

) dei . (35)

Since σ (is)i dei = dw(is)i and �T = �Tmax�T̄ it follows after separation of variables and integration that:

�T̄∫

0

exp(α�T̄ q + β�T̄ s)d
(
�T̄

) =
(
1 − k(uh)

)
w
(is)
i

c0ρ�Tmax
. (36)

The auxiliary functions U
(
�T̄

) = ∫�T̄
0 exp(α�T̄ q + β�T̄ s)d

(
�T̄

)
and U (ei ) =

(
1−k(uh)

)
w
(is)
i

c0ρ�Tmax
(cf.,

Fig. 6) allow to determine a relation between the deformed specimen temperature increment �T and the
strain ei (cf., Fig. 7), i.e., the dependence T (ei , ėi0, T0, µk0) in Eq. (21), and then to construct non-isothermal
hardening curves (cf., Fig. 8).
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Consequently, in view of Eqn (21), the yield condition shown in Eq. (11) can be rewritten as follows:

1

2
si ·· j s

j ·
·i −

(
τ (is)s

)2
exp

[
−2α

(
T − T0

Tmax − T0

)q]
= 0. (37)

By putting s2 = (
1
/

2
)

si ·
· j s

j ·
·i the differential of the yield function can be expressed as (see Eq. (15)):

d′ f = 2s
∂s
∂si j

si j − 2τ (is)s exp

[
−2α

(
T − T0

Tmax − T0

)q]

×
[
−αqτ (is)s

(
T − T0

Tmax − T0

)q−1

d

(
T −�Ts

Tmax − T0

)
+ ∂τ

(is)
s

∂µk
d′µk

]
. (38)

The scalar h takes on the following form (see Eq. (19)):

h = 1

4 τ (is)s s
exp

[
2α

(
T − T0

Tmax − T0

)q]
×

(
∂s
∂si j

)−1

×
[
∂τ

(is)
s

∂ei j
− Ksαqτ (is)s

(T − T0)
q−1

(Tmax − T0)
q + As

∂τ
(is)
s

∂χs
+ Bs

∂τ
(is)
s

∂µk

]−1

. (39)

Thus, the scalar multiplier dλ (see Eq. (13)) which connects the strain increments dei j with a “movement”
of the load surface f is known.

Experimental research of the deformation of steel shows that the thermal flux leads to a noticeable tempe-
rature increase of 300–400 K and to a reduction of the yield strength for large finite strains by 100–150 MPa.
The density of the work of deformation decreases accordingly when compared with isothermal conditions of
the process. The error of calculation for the processing force and the tool pressure can reach 20–30 % if the
thermal flux effect is not taken into account.

4 Kinetic equations for structural parameters

The exact form of the kinetic Eq. (5) can be determined on the basis of experimental studies on deformed
materials under various processing conditions. The analysis of metallic components which operate at intense
loads shows that damage induced by micro-defects, polycrystalline unit grain size, and the internal energy of
hardening are the structural properties that greatly influence their service performance. We summarize them
as meso-structural parameters.
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4.1 Constitutive equations of a tensor theory for strain damage induced by micro-defects

A development of the dislocation arrangement and follow-up dissipative propagation of submicroscopic voids
and submicroscopic cracks occur at the initial stage of deformation. Micro-void generation, growth, coales-
cence, and, finally, macro-crack formation (meaning macro-fracture) are observed during further increasing
deformation. The formation of voids is of great importance for the evolution of the strain damage in ductile
metals (cf., e.g., [39,40]).

The experimental work of several researchers allows us to determine a range of the damage values related
to a nucleation of cavernous defects and discontinuities as a result of the intense coalescence of separate voids
(cf., e.g., [3,9,25,34]). Cavernous defects appreciably affect the operating characteristics of finished products.
Reaching the critical damage range by the material subjected to working or processing loads can be considered
as a micro-fracture criterion.

Two mechanisms of void generation and growth are possible under plastic deformation of metals:

• due to a vacancy flux under the influence of tensile stresses at grain boundaries;
• due to nuclei of voids and discontinuities at triple junctions of grains and nearby large grain-boundary

angles under the action of local stress concentration during grain-boundary slip.

Void formation is promoted by diffusion processes as well as by a low mobility of meso-structural elements
(such as sub-grains, particles of inclusions, etc.) where voids arise. As a concept of damage a scalar quantity
ω is traditionally used in solid mechanics in order to describe the accumulation of defects during deformation
(Kachanov, 1986):

dω

dt
= ω̇

(
λ
(ω)
k

)
, i = 1 , 2 , . . . , (40)

where ω̇(λ(ω)k ) is a damage rate function of parameters λ(ω)k which are related to a stress state of the forming
process. The damage value varies within the range ω ∈ [0; 1] where ω = 0 corresponds to the initial state of
the material (the undamaged structure) and ω = 1 corresponds to the moment of macro-destruction. The strain
damage results in plastic dilatation of the structure of the metal. The residual relative increase in volume (i.e.,
the linear invariant εi ·

·i of the tensor of plastic strains εi j ) is taken as a measure of plastic dilatation. A critical
value εi ·

·icr of plastic dilatation is used to characterize the onset of macro-crack formation.
The connection between plastic dilatation and the dissipative formation and growth of strain meso-defects

allows to use the linear invariant εi ·
·i for the parameter λ(ω)k in Eq. (40), i.e., we put λ(ω)k = εi ·

·i . Thus, the kinetic
equation (40) can be expressed as:

dω

dt
= ε̇i ··i
εi ·
·icr

, (41)

where ε̇i ·
·i denotes a rate of plastic dilatation.

The known models of void growth [14,27,31] consider the volume fraction of voids as a measure of
damage:

fv = �Vv
�VRV E

, (42)

where �Vν denotes the volume occupied by voids within the representative volume element �VRV E . The
corresponding kinetic equation for damage is written as follows:

d fv
dt

= (1 − fv) ε̇
i ··i , (43)

Equation (43) characterizes a change in damage due to dilatation of the material resulting from void growth
(just as the kinetic Eq. (41) does for ω). The differential relation between the measures fν and ω follows from
Eqs. (41) and (43):

1

1 − fv

d fv
dt

= ε̇i ··icr
dω

dt
. (44)
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Table 3 Chemical composition of studied steels

Steel Chemical elements, percents by mass

Fe C W Mo V Cr

Hot-rolled steel Base 0.88 6.05 5.25 1.95 4.01
Powdered steel Base 0.97 6.05 5.18 1.91 4.07

While the important role of plastic dilatation as a factor in the assessment of damage for plastically
deformed metals is unquestioned [26], it is also necessary to note an influence of the shape of the defects and
their direction on the evolution of the strain damage [16,20,24]. Voids assume an elongated ellipsoidal shape
under large plastic deformation. At the same time, it turns out that a spatial orientation of the principal axes of
the meso-ellipsoids is related to the directions of the principal strains ε1, ε2, ε3 of material particles containing
a void. Thus, metals possess tensor properties of strain damage [5,28]. In order to estimate the damage of
deformed materials, which is related to volume, shape, and direction of defects, we introduce a symmetric
second-rank order tensor ωi j by the following differential equation:

dωi j

dt
= ω̇i j (λ

(ω)
k ), k = 1, 2, . . . , (45)

where ω̇i j (λ
(ω)
k ) denotes the dependence of the strain damage tensor on the parameters related to the stress

state of the processes.
Decomposition of the tensor of damage increments dωi j = ω̇i j dt into the hydrostatic tensor dωi i and the

deviator d�ωi j makes clear physical sense: the hydrostatic tensor dωi i describes the damage increment caused

by a change in volume, and the deviator d�ωi j accounts for the damage increment related to a change of defect
shape. Such a view on damage kinetics enables us to apply two integral measures for damage assessment,
namely:

ω1 =
∫

λ
(ω)
k (t)

I1

[
ω̇i j

(
λ
(ω)
k

)]
dt =

∫

λ
(ω)
k (t)

ω̇i ·
·i

(
λ
(ω)
k

)
dt,

(46)
�
ω2 = 2

∫

λ
(ω)
k (t)

√
I2

[
�̇
ωi j

(
λ
(ω)
k

)]
dt =

∫

λ
(ω)
k (t)

√
2�̇ω· j

i · �̇ω·ij ·dt ≡
∫

λ
(ω)
k (t)

√
2

(
ω̇i ·· j ω̇

j ·
·i − ω̇i ··i ω̇

j ·
· j

)
dt,

where I1
(
ω̇i j

)
and I2(

�̇
ωi j ) are the first invariant of the damage rate tensor ω̇i j and the second invariant of the

damage rate deviator �̇
ωi j , respectively. In physical terms the measure ω1 in Eq. (46) is identically equal to the

same measure ω in dissipative damage theory (Eqs. (40), (41)). This correspondence allows us to determine
ω1 by solving Eq. (41).

In view of the relationship εi ·
·i (Λ) between the plastic dilatation and the cumulative strain (cf., Eq. (12))

Eq. (41) becomes:

dω1

dt
= 1

εi ··i (Λlim)
· dεi ··i (Λ)

dΛ
· dΛ

dt
≡

[
εi ··i (Λ)

] ′Λ̇
εi ··i (Λlim)

. (47)

where Λlim denotes a limit value of shear strain corresponding to the point of destruction, and the dash refers
to differentiation with respect to Λ.

The function εi ·
·i (Λ) can be determined on the basis of a pycnometric analysis of change of the initial

density of deformed materials. Plastic dilatation was studied for multi-component alloyed steels made by two
manufacturing techniques: hot rolling and powder metallurgy (cf., Table 3). These steels are of essentially
different grain structures. The powdered steel has finer ferrite grains and evenly distributed small carbides
in contrast to the hot-rolled steel (cf., Table 4). The values of the structural parameters were obtained by
radiographic analysis. The selection of two materials with identical chemical compositions and essentially
different micro-structures allows us to study an effect of their micro-structural properties on the evolution of
strain damage. The test specimens were subjected to uniaxial tension up to their macro-destruction (fracture).
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Table 4 Structural parameters of studied steels

Steel ρ∗, cm−2 Ferrite lattice Ferrite grain Carbide Distance between Phase, percents by volume
parameter, nm size, µm size, µm carbides, µm

Carbide Carbide Ferrite
M6C MC

Hot-rolled 5 × 1011 0.2872 11.3 − 14.5 2.90 − 3.70 3.3 − 4.1 15 2 83
steel
Powdered 109 0.2871 3.7 − 4.5 0.99 − 1.21 0.73 − 0.87 14 4 82
steel
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Fig. 9 Plastic dilatation (εi ··i ) dependence on shear strain (Λ): left hot-rolled steel (C 0,88 %, W 6,05 %, Mo 5,25 %, V 1,95 %,
Cr 4,01 %); right powdered steel (C 0,97 %, W 6,05 %, Mo 5,18 %, V 1,91 %, Cr 4,07 %); K1 20◦C; K2 750◦C; K3 830◦C; K4
870◦C; dashed line linear model of plastic dilatation

Table 5 Parameters of plastic dilatation of studied steels

Parameters Hot-rolled steel Powdered steel

Strain temperature ◦C 20 750 810 − 825 850 20 750 810 − 825 850
a 1.170 1.000 0.339Λ+1.259 1.000 1.484 1.000 0.291Λ+1.212 1.000
b 0.092 0.049 0.0279 0.043 0.218 0.043 0.0147 0.038

Table 6 Temperature of phase transformations (results from the dilatometric analysis)

Material Point Ac1
◦C Point ASP

◦C

Hot-rolled steel 830 − 840 880 − 890
Powdered steel 815 − 825 870 − 880

In Fig. 9 the experimentally determined dependence of plastic dilatation on strain is shown for various
temperatures for two multi-component alloyed steels.

The dependencies obtained for the plastic dilatation of steels allow us to draw the following conclusions.
The experimental dependence εi ··i (Λ) can be approximated by the following power function:

εi ··i = bΛa, (48)

where a and b have been found by control points 1
(
εi ··i1,Λ1

)
and K

(
εi ··icr,Λlim

)
of the experimental curve

εi ·
·i (Λ) (cf., Table 5):

a = ln
(
εi ·
·icr

/
εi ·
·i1

)

ln
(
Λlim

/
Λ1

) , b = εi ·
·i1
Λa

1
= εi ·

·icr

Λa
lim
. (49)

The point K corresponds to the moment of fracture (cf., Fig. 9).
For cold deformation the function of plastic dilatation (48) assumes an exponent a > 1 (Fig. 9, curve

O K1). In the case of under-hot and hot forming the experimental diagrams O K2 and O K4 are very close
to linear approximations. For such conditions a linear dependence with a = 1 is used. Super-plastic (SP)
forming of steels was realized in the temperature interval [Ac1; ASP] corresponding to the diffusive phase
transformation (α → γ ) of the investigated steels (cf., Table 6). Therefore, a more complex function with a
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variable exponent a = a (Λ) is required for super-plastic deformation (Fig. 9, curve O K3):

εi ·
·i = bΛa(Λ) = bΛ(l1Λ+l0). (50)

The condition d2εi ·
·i
/

dΛ2 = 0 in the inflection point K ′
3 is added to Eq. (49) for calculating b, l0, l1. Thus,

a third dependence between these parameters results:

1

Λ

(
l1 − l0

Λ

)
+

(
l1 lnΛ+ l1 + l0

Λ

)2

= 0. (51)

The crucial stage of super-plastic deformation is the evolution of the inflection point K ′
3, which separates

the areas of delayed (O K ′
3) and the accelerated (K ′

3K3) development of damage in steels.
In view of Eq. (48) the differential equation (47) and integral dependency (46) for ω1 now become:

dω1

dt
=

[
bΛa(Λ)

]′
Λ̇

bΛa
lim

≡
( a
Λ

+ a′ lnΛ
)
ΛaΛ̇

Λa
lim

, ω1 =
∫

Λ(t)

( a
Λ

+ a′ lnΛ
)
ΛaΛ̇

Λa
lim

dt. (52)

Micro-fractograms in Fig. 10 have been obtained with the purpose of a more detailed understanding of the
fracture type for W-Mo steels at uniaxial tension under superplasticity conditions. The fracture surface contains
a dimple-type structure indicating ductile fracture. Meso-elements of the structure are rather elongated and
tracks of intragranular or phase-boundary shifts are visible on some of their surfaces. Porosity in fractures is
thus obvious. Separate areas with cup and quasi-cleavage fracture are visible in the fractogram of the hot-rolled
steel in Fig. 10a, because of its high structural heterogeneity. These regions of fracture indicate an irregularity
of superplastic deformation behavior. Such areas are missing in the powdered steel. The results of micro-
structural and fractographic studies show that deformation of both the steels under optimum temperature-rate
superplastic conditions allows attaining high strains even at uniaxial tension (when predominant tensile stresses
promote voids opening). The powdered steel has a ductility resource appreciably greater than the hot-rolled
steel owing to the finer granularity of its structure.

Fig. 10 Electronic fractograms and replicas of the steels after deformation under conditions of superplasticity. a Fractogram
of the hot-rolled steel ((×3, 000)), b fractogram of the powdered steel (×3, 000), c replica of the hot-rolled steel, damage ω
<0.75–0.80 (×5, 000) d replica of the powdered steel damage ω <0.75–0.80 (×5, 000)
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An electronic-micro-structural analysis of the specimens obtained under stage-by-stage deformation has
been carried out to study the evolution of structural damage. The analysis of electronic replicas (Fig. 10c,
d) allows to reveal a stage of active voids coalescence. For these steels the intense voids coalescence occurs
under deformation corresponding to damage ω1 > 0.75–0.85. The obtained results are very important for a
definition of operational strain in the manufacturing processes designed for the products with high working
characteristics.

The kinetic equation (47) contains the limit strain Λlim. Experimental research by [6] shows that the
metal ductility (i.e., the limiting strain) is effected by stress state, temperature-speed conditions of processing,
chemistry and the structure of metals, i.e.:

Λlim = Λlim

(
σ i j , ėi j , T, µk

)
. (53)

The experimental determination of the dependence indicated in Eq. (53) requires a complex system of
tests for each material. It is convenient to specify Eq. (53) by means of plasticity diagrams (cf., Fig. 11) which
connect the limit strain Λlim with characteristics of the stress state.

The basic characteristic is triaxiality, i.e., a combination of invariants σ̄ = 1
3 I1(σi j )/I 1/2

2 (si j ). The other

characteristic is the stress phaseφσ , i.e., a combination of invariants I3(si j )/I 3/2
2 (si j ). The presented diagram of

plasticity is made for metals with specified chemical composition and structure µk0 under fixed temperature-
speed conditions of processing, viz., ėi j0, T0. Obviously with increasing triaxiality the limit strain of the
material decreases but the damage increases (cf., Eq. (52)2), and vice versa.

In physical terms and according to Eq. (46) �
ω2 is a damage measure connected with a change of the void

shape during the plastic deformation of the metal. As shown by specialized experimental research the void
shape elongated in a direction of the principal tensile strain ε1 promotes the void growth and coalescence
[19,37]. The equivalent increment of the deviatoric strain of voids is taken as a measure of the void shape
change during the short time period dt :

d
�
e = �̇

edt =
√

1

2

(
�̇
e

i ·
· j
�̇
e

j ·
·i

)
dt, (54)

where
�̇
e · j

i · are deviatoric strain rates related to the voids.

The moment of critical value
�
ecr of equivalent strain of voids relates to a stage of intense coalescence of

ellipsoidal voids and to the formation of cavernous defects with sizes up to 20–30µm. This relation allows us
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Fig. 11 Diagrams of plasticity of constructional materials under as-delivered conditions: 1 low-carbon low-alloy steel, 2 Cu-Zn
alloy, 3 Al-Mg alloy
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to formulate the following kinetic equation:

εcr
�
ecr

d�ω2

dt
= dω2

dt
=

�̇
e
�
ecr

, (55)

where ω2 =
(
εcr

/
�
ecr

)
�
ω2.

The normalizing factor εcr/
�
ecr allows us to introduce the damage measure ω2 ∈ [0; 1] which is convenient

for comparing the calculations. Interval boundaries correspond to the initial (strainless) state of the material
and to a stage of intense void coalescence (the micro-fracture stage). The integrated value of the parameter
reads:

ω2 =
∫

t

�̇
e
�
ecr

dt ≡
∫

t

√
(
1
/

2
) (

�̇
e · j

i ·�̇e ·ij ·
)

�
ecr

dt =
∫

t

εcr
�
ecr

√
1

2
�̇
ω· j

i · �̇ω· j
i ·dt ≡

∫

t

εcr
�
ecr

√
1

2

(
ω̇i ·

· j ω̇
j ·
·i − ω̇i ·

·i ω̇
j ·
· j

)
dt.

(56)

For calculating the damage parameter ω2 during plastic flow of metals it is necessary to construct a
geometrical model to describe the change of the shape of the void. Stresses, strains, strain rates and temperatures
as well as connected properties of the deformed material studied in continuum mechanics are local parameters,
i.e., they relate to small volumes (�V ). Small volumes �V of engineering metals (with linear dimensions
�s = 35–140µm) include meso-volumes (�Vmeso) with meso-structural elements (grains, voids, dislocation
cells with linear dimensions�smeso = 3–18 µm). Thus, the volume ratio is�Vmeso

/
�V = (6.3–21.3)×10−4.

In a number of publications the physical model of the ductile damaged material (obviously, based on the
afore-mentioned volume ratio) corresponds to the volume element (�V ) with a representative distribution
of micro-defects (with the volume �Vmeso), (cf., Fig. 12). For developing a mathematical model of ductile
damaged material the representative volume element�V (RVE) is often idealized as an elementary rectangular
parallelepiped with a regular distribution of micro-defects, i.e., voids [9]. In earlier papers a sphere, and a
circular or elliptic cylinder were assumed as elementary void shapes [11,14,27,31]. The ellipsoidal shape of
voids with a variable ratio between the principle axes was used in later papers [7,9,10,42]. The ellipsoidal
model allows us to describe the damage evolution in deformed materials much more precisely in view of both
the void volume growth as well as the change of the void shape. It is also worth mentioning that the ellipsoidal
shape allows us to model the void coalescence satisfactorily.

In the present paper the model of an ellipsoidal void is applied in order to study the processes of complex
loading of plastically deformed damaged solids. Under complex loading the ratio between the principal strains
ε1, ε2, ε3 changes and the principal strain axes rotate over the material fibers (i.e., w.r.t. an accompanying
coordinate system). We consider a meso-volume element �Vmeso with one void (cf., Fig. 13). At the initial
moment of the deformation the shape of the particle meso-volume is a cube, and the void shape is a sphere
(with the volume �Vv0). The space orientation of the meso-parallelepiped corresponds to an accompanying
coordinate system ξ k, k = 1, 2, 3, chosen at the initial moment t0 (cf., Fig. 13, left). The accompanying

Fig. 12 Arbitrarily complex deformation of the RVE: left initial moment, right current moment
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Fig. 13 Arbitrarily complex deformation of the meso-volume with a single void: left initial moment, right current moment

axes ξ k are rigidly connected with the particles of the continuum and deform concurrently. Therefore, the
accompanying Cartesian system of orthogonal coordinates chosen at the initial moment becomes, generally
speaking, curvilinear and non-orthogonal under arbitrarily complex deformation. During arbitrarily complex
deformation (for the finite period �t = t − t0) the cube-shaped meso-volume transforms into an oblique
parallelepiped, and the spherical void transforms into an ellipsoid with the volume �Vv (cf., Fig. 13, right).

We select in a volume�Vv0 of the spherical void three diametric segments (
�

A0
�

A
′
0,

�

B0
�

B
′
0,

�

Co
�

C
′
o )which,

at the initial moment t0, pass through the center of the sphere,
�

M0, in the direction of the coordinates ξ k . At

the current moment of deformation, t , they transform into the material segments
�

A
�

A
′
,

�

B
�

B
′
,

�

C
�

C
′

of the

ellipsoid and the angles between them are
�

ψk0 = π
/

2 ⇒ �

ψk �= π
/

2, k = 1, 2, 3. These six parameters of the
ellipsoid (three linear and three angular) are connected with the metric tensor gi j of the accompanying axes

ξ k and allow to determine the void strain �
ε i j with respect to the initial void state as follows [32]:

�
ε i j = 1

2

(
gi j − gi j0

)
, (57)

gi j = κ i · κ j = |κ i | · ∣∣κ j
∣∣ cos

�

ψk, gi j0 = κ i0 · κ j0 = ∣∣κ i0

∣∣ · ∣∣κ j0

∣∣ cos
�

ψk0
, (58)

where κ i , κ i0 are covariant base vectors of the accompanying axes ξ k at the current and the initial moment t

and t0, respectively;
�

ψk,
�

ψk0
are the angles between the vectors κ i and κ j at the current and initial moments.

Covariant components of the void strains can be found as (cf., Appendix):

�
ε11 = 1

2
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, . . . , (59)

including the mixed components:
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ε

1·
·1 = 1
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which are required for the calculation of the volumetric (�ε
i ·
·i ) and the deviatoric (

�
e) strain of the voids. The

principal strains �
ε1,

�
ε2,

�
ε3 can be found by solving the characteristic equation for the strain tensor:

�
ε1 = 1

3
�
ε ·i

i · + 2√
3

�
e cos

(
φe − π

3

)
,

�
ε2 = 1

3
�
ε ·i

i · + 2√
3

�
e cos

(
φe + π

3

)
,

�
ε3 = 1

3
�
ε ·i

i · + 2√
3

�
e cos φe, (61)

where φe is the Lode angle for the strains.
An experimental determination of the changing sizes of voids is connected with great technical difficulties

[23]. This is why we will make use of statistical characteristics of void formation. For instance, the averaged
characteristics of the void strain for the present elementary volume �V can be applied within each RVE.
A corresponding measure is the strain (εi j ) of RVE. If at the initial moment t0 we select in the volume
element three material segments (A0 A′

0, B0 B ′
0,CoC ′

0 ) which pass through the center M0 in the direction of
the coordinates ξ k then they will transform into material segments AA′, B B ′, CC ′ at the current moment
t , and the angles between them will be ψk0 = π

/
2 ⇒ ψk �= π

/
2, k = 1, 2, 3. These six parameters of the

RVE allow us to determine its strains εi j by relations analogous to those for the void strain. The hypothesis
that it is possible to model the void deformation by using the strain measures of the material volume element
requires a detailed experimental verification. The experimental justification of this hypothesis will allow us to
predict shape changes and coalescence of voids by means of accompanying axes plotted as coordinate grids
on deformed specimens and manufacturing half-stuff.

The determination of the critical equivalent strain
�
ecr of voids in the investigated materials is based on

electron-probe analysis of the void coalescence in test specimens during their stage-by-stage plastic deforma-
tion. Obtained electronic replicas allow us to detect a stage of intense void coalescence into large cavernous
defects (discontinuity flaws). The combined use of two damage measures, ω1 and ω2, (in contrast to using
only ω1 as in previous publications) allows us to predict not only a risk of macro-fracture of the deformed
material but also a stage of formation of large cavernous defects due to coalescence of voids taking a change in
their shape and orientation into account. This approach is necessary when producing metalware to be operated
under intense load and thermal action, high pressure and strain rate. It can be explained by the indisputable
fact that a high-quality micro-structure of the metal (without large cavernous defects and clusters) essentially
improves an ability of metallic components to withstand dynamic impact loads and also enhances their fatigue
resistance. Such products and components are widely used in aerospace, automotive and energy engineering.

4.2 Grain size and internal hardening energy

An essential structural parameter of the deformed metal is the grain size (diameter D). The experimental data
by [2] show that strain Λ, temperature T and strain rate Λ̇ effect the grain size of processed metals, i.e.:

dD

dt
= Ḋ (Λ, H, T, µk) . (62)

Three-dimensional diagrams representing the grain size dependent on strain and temperature (recrystalliza-
tion diagrams) can be obtained by integrating Eq. (62) for the materials with a specified initial micro-structure
µko and strain rate Λ̇0:

D (Λ, T, Λ̇0, µk0) =
Λ∫

0

T∫

T0

Ḋ′ (Λ, T, Λ̇0, µk0
)

dΛ dT . (63)

These integrals represent a set of hypersurfaces in the phase space D,Λ, Λ̇, T, µk . For calculations
it is convenient to use a set of plane curves D = D (Λ, T0, Λ̇0, µk0) for describing the surface D =
D (Λ, T, Λ̇0, µk0). Experimental studies in die forging of low-carbon low-alloy steels allow us to formu-
late the following form of Eq. (62):

dD

dt
= −γ (Λ−Λ0)

p−1Λ̇D0 exp
[−γ (Λ−Λ0)

p] , (64)
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where D0 is the grain size corresponding to the initial shear strainΛ0; γ (T ) , p (T ) are parameters determined
by experimental control points.

Recrystallization by annealing recovers ductile properties of processed half-finished products. Thus it is
reasonable to predict the grain size by means of recrystallization curves D = D (Λ0, T, Λ̇0, µk0) as shown
in Fig. 14 (left). Recrystallization curves are used for metal forming with further annealing at the specified
temperature. In this case the grain size is determined by the strainΛ and the temperature T prior to annealing.
The kinetic equation of recrystallization is [36]:

dD

dt
= D1

n

t̃

(
1 + t

t̃

)n − 1

, (65)

where D1 is an average diameter of the grain before annealing; n is the parameter related to temperature; t̃
denotes a characteristic time of isothermal heating (when the grain size increases (2n − 1) times).

In case of isothermal heating the parameter n does not depend on time. The grain size is determined using
the following power dependence:

D = D1

[(
1 + t

t̃

)n

− 1

]
. (66)

The internal energy of hardening Eh or its density uh = dEh/dΩ is one of the main factors defining
an irreversible change of the crystalline structure of the deformed metal (Ω being a volume of the deformed
region). According to experimental data obtained by the electron microscopy the internal energy of hardening is
close to the total energy of dislocations and connected with a change in the dislocation arrangement as follows.
Initially, at small deformation almost all absorbed energy is consumed for creation of the crystalline structure
(dislocations) and resistant defects at the current temperature. Defects will still nucleate while the deformation
increases. However, some of them vanish as the growing density of the deformation work reduces the activation
energy of the defect annihilation due to both a dissipative rise in the temperature and an intensification of the
dislocation interaction [2]. This change of the internal energy of hardening is described by the following kinetic
equation (cf., Fig. 14, right):

duh

dt
= µ(uh)

√
I2(Dσ )Λ̇, (67)

where µ(uh) denotes the parameter related to strain.
For a number of engineering materials we may write:

µ(uh) = µ
(uh)
0 exp(−Λ/Λlim), (68)

µ
(uh)
0 being an initial value of the parameter µ(uh) (obtained by the experiments).

Fig. 14 Left the integral surface of the kinetic equation (68) in the phase subspace D,Λ, T : 1 supporting curves D =
D

(
Λ, T0, Λ̇0, µk0

)
, 2 supporting curves D = D

(
Λ0, T, Λ̇0, µk0

)
, right the internal energy of hardening dependent on strain

rate Λ̇ and shear strain Λ
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5 Conclusions and outlook

Plastic flow theory and continuum damage mechanics provide a theoretical and methodological framework for
research and modeling of forming processes for metalware with optimum service properties. Such a combined
basis allows us to solve the following problems:

• to formulate a system of constitutive equations for modeling and analyzing metal forming processes together
with the prediction of meso-structural properties of deformed materials;

• to create associated physico-mechanical models for the strained material which will describe not only
its mechanical behavior but also essential physics properties at a meso-structural level (strain damage,
polycrystal unit grain size, internal energy of hardening).

The developed system of basic governing Eqs. (1)–(12) describes large plastic deformations under complex
loading conditions typical for a number of metal forming processes (e.g., deep-drawing, die forging, extrusion,
super-plastic forming). The possibility of the analysis of non-stationary plastic flow in such forming processes
is very important. This necessitates the stage-by-stage determination of the stress-strain state and related
meso-structural parameters.

The von Mises yield function includes the yield stress depending on strain, strain rate, temperature, and
parameters of the meso-structure. Representation of the yield stress dependence (20) by the hypersurface f = 0
in the phase space σs, ei , ėi , T, µk allows its specification for each material by means of non-isothermal har-
dening curves obtained by tests for different deformation conditions. Based on the systematized experimental
data the power dependence (21) of the yield stress on the temperature is proposed. It also arises from the
fundamental principles of thermodynamics for deformed metals. The plotting technique for non-isothermal
curves is presented for materials with a variable meso-structure when a change in temperature, T , is connected
with a thermal flux effect during the deformation depending on the strain path, s.

Meso-structural damage parameters of deformed materials appreciably affect the operating characteristics
of finished products. A tensor theory of strain damage induced by micro-defects is of great importance from the
point of view of a combined physico-mechanical approach. The method offered for determining the symmetric
second-rank order tensor of damage makes physical sense as this tensor is decomposed into hydrostatic
and deviatoric parts: The hydrostatic tensor describes the evolution of damage connected with a change in
volume, while the deviator describes the evolution of damage connected with a change in defect shape. Such
a representation of damage kinetics allows to use two integral measures, ω1 and ω2. These measures are very
important for the estimation of the meso-structure quality of metalware produced by metal forming techniques
and subjected to intense power and thermal loads, high strain rates, physico-chemical actions.

A successful practical application of the tensor theory requires rather laborious experimental research on
damage kinetics for deformed materials under complex loading. The most urgent problem is the experimental
characterization of the material constants appearing in the constitutive equations for damage. Critical plastic
dilatation, εi ·

·i , limiting cumulative strain, Λlim, critical equivalent strain of void,
�
ecr are necessary to be

considered among these material constants.
Results of the calculations of material constants and parameters relevant to the defining relations were

given only for selected materials. Performing similar calculations for other materials will require further
complex experiments at the meso-level. Indeed, such experiments will allow us to create a well-founded
database for meso-structural properties of plastically deformed materials which is a prerequisite for computer
simulations. The presented basic relations and rheological dependencies describe large plastic deformation
of many structural metals used in mechanical and aeronautic engineering quite satisfactorily. Naturally, new
structural metallic materials are constantly developed and, thus, studies of their rheological behavior under
plastic deformation will eventually necessitate a generalization of certain dependencies (e.g., Eqs. (21), (26))
or even require use of fundamentally new models.

It should also be noted that the basic equations of meso-structural damage include stress-strain state
characteristics. Therefore, a reliable prediction of damage parameters necessitates an exact determination of
the stress fields, σ i j , and of the flow velocity fields, υi , in deformed materials allowing for complex loading
conditions and the strain path, s.

In a single paper it is obviously impossible to discuss (even in a compressed form) all the questions pertinent
to the presented constitutive equations. In particular this holds for the technically relevant but complicated
questions of instabilities in plastically deformed blanks and half-stuffs. The complex problem of stability,
which is typical for some processes of sheet metal forming (e.g., deep-drawing, swaging), will be the subject
of separate publications. The ultimate goal of the authors is to implement the damage criterion which combines
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ω1 and ω2 in numerical solution schemes for metal forming. To this end computational techniques will be
developed which, eventually, can be coupled with finite element codes.
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Appendix

Covariant components for the strain of voids

The covariant base vectors κ i , κ i0 change from one point of the deformed solid to another and can be determined
by differential dependences:

κ i = ∂ r
∂xi

, κ i0 = ∂ r0

∂xi
, (A.1)

where r, r0 denote radius-vectors of points of the deformed solid at the current and initial moments. Moreover
we note the following relations for the basis vectors:

|κ i |∣∣κ i0

∣∣ =
∣∣∣ ∂ r
∂ξ i

∣∣∣
∣∣∣ ∂ r0
∂ξ i

∣∣∣
= |dr i |∣∣dr i0

∣∣ = dsi

dsi0

, (A.2)

where dsi, dsi0 denote increments of arcs of the coordinate lines ξ i at the current and initial moments of
deformation (within each void being its linear dimensions):

ds1 ≈ �

A
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A′
,ds2 ≈ �

B
�

B ′
,ds3 ≈ �

C
�

C ′
,ds10 ≈ �
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�
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′
, . . . (A.3)

In view of the relations (58) and (A.2) the relation (57) for the components �
ε i j becomes:
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If the accompanying coordinate system ξ k of the initial state is Cartesian we have
∣∣κ i0

∣∣ = ∣∣κ j0

∣∣ = 1, cos (
�

ψk0
) =

δi j , and the dependence (A.4) takes on the following form:
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including the mixed components:
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(A.6)

For example, in view of Eq. (A.3) all covariant components of the void strains can be found as:
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