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A PROBABILISTIC PROOF OF BLACKWELL’S
RENEWAL THEOREM

By TORGNY LINDVALL
University of Géteborg

A coupling method is used to give another proof of Blackwell’s re-
newal theorem. The nature of the proof is probabilistic, using in an essen-
tial way the nonlattice property of the lifetime distribution and the Hewitt-
Savage zero-one law.

1. Introduction. As a complement to the interesting analytical methods to
prove Blackwell’s renewal theorem (cf. Feller [4], XI. 1-2, pages 346 ff. and
Breiman [2], 10.1-3, pages 216 ff.), it is the purpose of this note to show how
a certain probabilistic method applies, namely a coupling with an independent,
stationary renewal process. The use of couplings goes back to Doeblin [3].
They have attracted much interest in recent years: for an introduction and
further references, see Griffeath [6].

Of great interest in the present context is a paper by Pitman [8], which pays
considerable attention to discrete renewal theory. In his investigations of ran-
dom walks, covering the renewal theorem, Ornstein [7] makes use of a coupling
argument in the proof of his Theorem 0.7. He benefits from the Chung-Fuchs
theorem on recurrence.

In this note, a new type of coupling is introduced. Our aim is to present a
proof that is as short as possible and leans on no theorem that demands a tech-
nically complicated proof.

2. The proof.

2.1. Preliminaries. Let X,, X,, ---, be i.i.d. nonnegative random variables
with 0 < E[X;] = # < co and distribution function F of nonlattice type, i.e.,
its support is not a subset of the multiples of any single number. With §, = 0
and S, = X7 X,, {S,)5 is the renewal process with renewals at each S,, n = 0.
For B c [0, o), let

N(B) = #{i; S, € B}, U(B) = E[N(B)] .
Blackwell’s renewal theorem states that for every finite 4 > 0,
Ulx,x + A] — Alu as x-—oo.

Let the random variables X, X/, - - -, be independent, also independent of
(X,>r. Here, X/, X/, ..., all have distribution F, X;’ has a density

foy) =@ = F(y)/e, y=0.

Received February 10, 1976; revised September 6, 1976.
AMS 1970 subject classification. Primary 60KO05.
Key words and phrases. Blackwell’s renewal theorem, probabilistic proof, coupling method.

482

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ%%

The Annals of Probability. RIX@RY;
Www.jstor.org



BLACKWELL’S RENEWAL THEOREM 483

With S,/ = 32 X/, (S,/>¢ is the “coupling process,” a delayed renewal process
which is strictly stationary in the sense that {S],,, — )y, has the same distri-
bution as {S,’>¢ for every t > 0; here,

vty =min{j =2 0; S/ = ¢}.

To understand that stationarity, see Feller [4], pages 353-355. Obviously, the
t above may be replaced by any nonnegative random variable independent of
(X, »z: the strict stationarity is retained. The notations N’ and U’ have the
obvious meaning.

The idea in the proof is to show that, sooner or later, a renewal from (S,)¢
comes ““close’” to one from {S,’>y. After that has occurred, both processes behave
much like one another, because the (S, process is unchanged probabilistically
on replacing the X,’s in its definition by the proper X,”’s onwards from where
(S,yz and ¢S,’) first come close (cf., e.g., Example 1 of Griffeath [6]). But
{S,),™ is stationary, hence (S,)¢ is eventually so too, approximately, and we
have U[x, x + A] = U'[x, x + A] = A/p for large x.

2.2 The details. Fori =0, let
Z; = min {S:i, T Sj’ -8 = 0’] = 0} = S:(Si) -8
and for any fixed 6 > 0, let

A, ={Z; < 6 forsome j=i}.
We have
Ay DA D - DN2Ad; =4, ={Z, <06 i.0.}.

But by the stationarity of the process ¢(S,’); and the fact that (S;,, — S;>7_, is
a sequence with distribution independent of i, (Z;,,)7_, is also a sequence with
distribution independent of i. Hence all the A4,’s have the same probability,
and in particular, P(4,) = P(4.). Now P(4_|X,’ = ) equals 0 or 1 for every ¢
by virtue of the Hewitt-Savage zero-one law (cf. [4], page 122) applied to the
i.i.d. sequence (X;, X’), (X,, X3/), - --. That F is nonlattice renders P(4,| X, =
t) > 0 for every ¢, cf. [4], page 144, Lemma 2. These observations and the
equality

{P(A4)| Xy = 0)fy(t) dt = P(A4) = P(A,) = {P(A,| X = t)fy(t) dt,

force P(A,| X, = t) to be 1 a.e. with respect to the distribution of X,’. Hence
P(A4,) =1, a fortiori P(4,) = P(Z; < ¢ for some i) = 1. Let

T = min {i; Z, < 4}, T’" = min {j; S/ = S},
so that T" = y(S;). With

N"[x, x + A] = N([x, x + A] 0 [0, S,])
+ N'([x + Zp, X + A + Z;] 0 (Shy 00))
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we certainly have N”[x, x + A] =_ N[x, x + A]. Hence
Ulx, x + A] = E[N"[x, x + A]]
= E[N(x,x + A] n [0, S;])] + E[N'[x + Z, ,x + A + Z,]]
— E[N(x + Zp, x + A+ Z;] 0 [0, Sp.])]
= Vi(x) + Vi(x) — Vi(x), say.

Since we can choose arbitrarily small 6 > 0, we can make V,(x) arbitrarily close
to A/p uniformly in x by virtue of the fact that Z, < ¢ implies

A—=0)p=Ulx+0, x4+ Al S Vy(x) S Ulx,x + A 4 ] = (4 + d)/p .
Next, since N[x, x + A] is stochastically no larger than N[0, 4], we have that
Vix) £ E[N[x, x 4+ A] - I(x £ S;)]
< a-P(x £ 8;) + E[N[0, 4]; N[0, 4] = 4],

an inequality valid for any @ > 0. Now E(N[0, A]) = U(A4) < oo so the last
term tends to zero for a — oo, and then because S, < oo a.s. the term aP(x <
S;) — 0 for x — co. We show similarly that V,(x) — 0 as x — co, and the proof
is complete.

3. Concluding remarks. The same arguments provide another simple proof
of the discrete renewal theorem, with the simplification that by taking 6 < span
of the lattice of the distribution F, we automatically have Z, = 0.

To prove U[x, x + A] — 0 in the case y = oo, it is tempting to use a trunca-
tion argument. However, no such proof has been settled, as far as I know.
Nevertheless, there is a short analytical one, along the following lines (cf. Freed-
man [5], pages 23 ff.). Let 8 = limsup,_, U(t, ¢t + 1] = lim,__ U(z,, ¢, + 1].
Conditioning with respect to S; yields 8 = lim,__, § U(t, — y, t, + 1 — y]F**(dy)
for every i; this fact and the asymptotic density of the support of U render
liminf,_, U(t, — j, t, + 2 — j] = B for integers j = some j,. The relations1 =
§6 (1 — F(t, — ))Uy) = (1 — FQ)) - Ulty — 2, 1,] + (1 — F(4) - U(t, — 4,
t, —2] + .-+ and a limiting argument force 8 to be 0, because > 2, (1 —
F(2i)) = oo.

We have paid attention to nonnegative X;’s only. The extension to a result
about random walks with drift follows from the result about such X;’s by an
analysis of the imbedded ladder height process, as was proved in detail by Black-
well himself [1].

Acknowledgment. I am much indebted to Dr. J. Pitman and the referee for
their comments on the first draft of this note.
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