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Abstract

We define Lorentz-Zygmund spaces, generalized Lorentz-Zygmund spaces, slowly
varying functions, and Lorentz-Karamata spaces. To get an interpolation charac-
terization of Lorentz-Karamata spaces, we examine the K- and the J-method of real
interpolation with function parameters in quasi-Banach spaces. In particular, we
study the Kalugina class Bx and prove the Equivalence Theorem and the Reitera-
tion Theorem with function parameters.

Finally, we define the A and ¥ method of extrapolation and achieve an extrap-
olation characterization that allows us, in particular, to characterize generalized

Lorentz-Zygmund spaces by Lorentz spaces.
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Introduction

For 0 < p,q < 00, a € R, and 2 C R™ with finite Lebesgue measure, the Lorentz-
Zygmund space Ly, 4(log)a(£2) is the space of all complex-valued functions f on
such that

1L paltog @l = ([~ + oz s} ) < o

Here f* denotes the non-increasing rearrangement of f.
In [4] an extrapolation characterization of these spaces is developed. This extrapo-

lation has been introduced before in [18] in a very general context. It says, for a < 0

1 .
and — :=1 4+ 277 that
p.“] p

>© 1/p
(Z 29 | F|L s ,qm)up)

J=Jjo

is an equivalent quasi-norm in L, ,;(log)(€2). A similar method can be used for the
case a > 0. Such, we can transfer properties of Lorentz spaces to Lorentz-Zygmund
spaces.

This is proved by characterizing both the spaces Lu; ,(2) and Ly 4(log)a(2) by
interpolation of the same (ordered) couple of spaces (Lo (€2), Ly (£2)). To this end one
has to apply a more general interpolation method than classical real interpolation
that works with function parameters.

In this thesis, we generalize the above extrapolation characterisation by replacing
(1+ [log ) by

where [1(t) = 1+ |logt| and [;(t) =1+ ’log(li,l(t))’ fori=2,3,....

In [7], the resulting spaces have been called generalized Lorentz-Zygmund spaces.



The thesis is organized as follows. In the first chapter we describe some basic facts
that we will need. Moreover, we define the so called Lorentz-Karamata spaces as the

space of all functions f on 2 with

1Ll = ([~ o000 0} ) <.

The appearing function b is a slowly varying function (See Definition 1.4.1). For
example, the above mentioned product of iterated logarithms is slowly varying.
So, Lorentz-Karamata spaces are a further generalization of generalized Lorentz-
Zygmund spaces.

In the second chapter we treat interpolation with a function parameter. There, we
first introduce the Kalugina class Bx of admissible parameter functions and prove
some basic properties of this interpolation method such as the Equivalence Theorem,
the Reiteration Theorem and the Interpolation Theorem. We follow mainly [13], but
consider the case of quasi-Banach spaces and use functions that are merely equivalent
to a function in Bgx. So, we can also use slowly varying functions as parameter
functions and characterize Lorentz-Karamata spaces as interpolation spaces.

In the third chapter, following [4] and [18], we examine the A and ¥ method

of extrapolation. Firstly, we extrapolate abstract interpolation spaces. There we

Y
)

where Aev%v---vaquaqu denote the interpolation spaces that use the above mentioned

generalize the results of [4] to get

o0

E —Jjana ,
Ae’alr"’a]\],]_:a]\ﬂq ~ < 2 N ”a|A9,a1,...,aN_1+2—J,q

i=1

product of iterated logarithms as function parameters. By induction, we get a char-

acterization of Agq, by means of classical real interpolation spaces. Then

AN_1:¥N4
we apply this theory to concrete function spaces and get an extrapolation character-

ization of generalized Lorentz-Zygmund spaces based on Lorentz spaces.



1 Preliminaries

1.1 Notations

As usual, we denote by N, R, and C the natural, real, and complex numbers.

For two positive functions f and g, defined on (0,00), we write f < g if there is
a constant ¢ > 0 such that f(¢) < cg(t) for all ¢t € (0,00). Analogously, we define
f=Zg If f<gandf 2> g, wesay that f and g are equivalent and write f ~ g.
Sometimes we will write f(¢) instead of f even if we refer to the function and not to
the value of f at the point t. We will do that for the sake of clarity, especially if f
is given as a product or a composition of some functions.

By logt we denote the logarithm to the basis 2 of t and by In ¢ the natural logarithm
of t.

For a measurable set A C R? we denote by |A| its d-dimensional Lebesgue measure.
For a given set A we choose d as small as possible, for example, if A is an interval of
real numbers, |A| denotes the one-dimensional Lebesgue measure.

Mostly, we will denote positive constants by ¢. This ¢ can be different from line
to line.

If an assertion holds for all 0 < ¢ < oo, we will write down the proof only for

q < oo if the proof for ¢ = oo follows by the same arguments or is very simple.

1.2 Quasi-Banach spaces

Definition 1.2.1. Let A be a complex vector space. A functional ||-|Al|: A — [0, c0)

is called a quasi-norm, if
() lalA] =0 iff a=0,
(ii) ||[Aa|Al = |\|||la|A]| for all A € C and a € A, and
(iii) there is a constant ¢ > 1 such that [|a+b|A|| < ¢(||la]A||+[/b]A]|) for all a,b € A.

I-|A]| is also called a c-norm and (iii) the c-triangle inequality. If (iii) holds with

¢ =1 then ||-|A|| is called a norm.



Definition 1.2.2. A quasi-normed space A is called complete if every Cauchy se-
quence converges to an element of A. Then, A is called quasi-Banach space. If A is

normed, it is called Banach space.

Remark 1.2.1. Let A and B be quasi-normed spaces. We say that A is continuously
embedded in B and write A — B, if A C B and there is a positive constant ¢ such
that [|a|B]| < c||la|A]| for all a € A.

If A— B and B — A, we say that the quasi-norms in A and B are equivalent
and write [|-[A]] ~ [|-| B]| or [[a|Al| ~ [|a|B].

We write A = B if the spaces are equal as sets and the quasi-norms are equivalent.
The following definition of the Lebesgue spaces is taken from [12, p. 1].

Example 1.2.1. Let @ C R™. For all 0 < p < oo, the space L,(12) is defined as the

set of all complex-valued measurable functions on {2 such that

Lif@p iz < .

The space Lo (£2) consists of all measurable functions on 2 such that for some B > 0
the set
{z€Q: |f(x) > B}

has measure zero. We consider two functions equal if they are equal almost every-
where.
We put

Iz = ( [ 1o dx);,

if 0 < p<ooand
| f|Loo(Q)]| = inf{B > 0: ‘{x e Q:|f(x)] > B}‘ =0}.
If 1 < p < o0, Minkowski’s inequality
1+ gl Lp (D < [IFILp (] + llg|Lp (D)

holds and L,(f2) is a normed space. For 0 < p < 1 Minkowski’s inequality does not
hold, in fact, for f,g > 0, it is reversed (see [15]).
But, for 0 < p < 1 we have

1+ 9l Lo( @] < 277 (IF1Zp( Q)| + llg]Lp()]])



and so, L,(€2) is quasi-normed. For all 0 < p < oo one can show that L,() is

complete.

Lemma 1.2.1. Let ||-|A|| be a c-norm and let v be defined by (2¢)Y = 2. Then there

is a norm ||-|A|* such that
lalAll" < llaAl[" < 2[|al A"
for all a € A.

Proof. A proof can be found in [3, pp. 59-60]. O

Lemma 1.2.2. Let A be a c-normed space and let (2¢)Y = 2. Then A is complete if

and only if
oo 1
S
(Slastarr)” <o
=0
oo
implies that ) a; converges in A to an element a € A and
j=0

1
0 3
AH < (Z|raj\Aw> |

J=0

o0
>
7=0

Proof. From Lemma 1.2.1 follows
m v m % m m
[Sal Al <23 a4 < 23 hestan < 23 hasta
Jj=n j=n Jj=n j=n

n

Therefore ) a; is a Cauchy sequence and, because of the completeness of A, con-
j=1

vergent in A. O

1.3 Non-increasing rearrangement and Lorentz spaces

Definition 1.3.1. Let Q C R™ and f be a measurable function on 2. The function
d¢:[0,00) — [0,00] is defined by

dy(t) = [{z € Q: |f(2)] > t}].

We call d; distribution function of f.



The following lemma is taken from [12, p. 4]. It shows that the distribution

function contains all information about f that determines its L, quasi-norm.

Lemma 1.3.1. For f € L,(Q2), 0 < p < oo, we have

Hﬂ%ﬂMsz/ 14 (1) dt.
0

Proof. We have

p/o P d g (t) dt:p/o tpl/ﬂx{m; 1f(@)>t) (y) dy dt

[f ()]
:// ptp_ldtdy
QJo

=L/ﬂfu»de
Q
O

For a measurable function f we now want to construct a function f* that has the

same distribution function as f (f and f* then are equidistributed).

Definition 1.3.2. Let f be a complex-valued function on 2. We define the function
f*:]0,00) — [0, 00] by

f(t) =inf{s > 0: ds(s) < t},

where inf () = co. The function f* is called non-increasing rearrangement of f.
Lemma 1.3.2. Let f be a measurable function on 2. Then
(i) df(0) = [supp f],
(ii) f* is non-increasing and right continuous,
(iii) of || < oo, then f* is supported in [0, |€],

(iv) dy = dy-.
) i0<p < oc, then |71z, = ([~ rerar)”

(vi) [[f1Loo (D) = f7(0),

(vii) if f*(t) < oo, then dys(f*(t)) < t.



Proof. (i), (ii),(iii), and (vi) are immediate consequences from the definitions. For a

proof of (iv) and (vii), see [12, p. 48|. (v) follows from Lemma 1.3.1 and (iv). O

With the help of the non-increasing rearrangement we can define the Lorentz

spaces.

Definition 1.3.3. Let 0 < p,q < oo and f be a measurable function on Q. If
0 < g < oo, we put

<1 dt\ @
1Ll = ([t r@) )
and if ¢ = co we put
[f1Lp,oo ()] = sup t7 f*(2).
t>0

The Lorentz space Ly 4(S2) is the set of all f with || f| L q(2)]| < co. Again, functions

that are equal almost everywhere are considered equal.

Remark 1.3.1. For 0 < p < oo we have that L, ,(2) = L,(2). This follows from
Lemma 1.3.2 (iv). If 0 < ¢ < oo, then the space Lo 4(£2) consists only of the zero
function.

The functional ||f|L,4(£2)| does not satisfy the triangle inequality, but the c-
triangle inequality with ¢ = 2% max{1,2%}. What is more, Ly 4(€2) is a quasi-

Banach space for all 0 < p,q < co. For a proof, see |12, p. 50].

Remark 1.3.2. If 1 < p < oo and 1 < ¢ < oo, then L, ,(£2) can be equipped with

a norm. Put .
*3k 1 *
o= [ red

0

for all £ > 0 and )

/ 21 *ok q dt\a

L@l = ([ @y F)

Then ||-|Lpq(2)]]" is a norm and it is equivalent to ||-|L, 4(2)]|. See [3, p. 16].

For the following lemma, see |2, p. 217].

Lemma 1.3.3. (i) Let0<p<oo and 0 < ¢1 < g2 < 00. Then

Lp:(h (Q) — Lpan (Q)’

10



(ii) Suppose |2 < 0o and let 0 < p1 < p2 < 00 and 0 < q1,q2 < 00. Then
Lp2¢12 (Q> — LP1,Q1 (Q)

Now we generalize the Lorentz spaces by adding a logarithmic term. See [1, pp.
21-22,29].
Definition 1.3.4. Let Q@ C R™. Let 0 < p,q < o0 and o € R. Then the Lorentz-

Zygmund space Ly, 4(log L) (§2) consists of all measurable functions f on €2 for which

1
q

(B a+ ot @) 4, 0<a<o,

| f|Lp,q(log L)a(2)[| = )
igg{ﬂ(l + [log t))*f*() }, q = o0,

is finite.
If p = g, the spaces are called Zygmund spaces and are denoted by L,(log L), (£2).
Remark 1.3.3. Forall 0 < p,q < co and a € R, the space L, 4(log L)(?) is a quasi-

Banach space. As in the case of Lorentz spaces, for 1 < p < oo and 1 < g < o0, if

we replace f* by f**, we get an equivalent norm. See [1, p. 30].
Next, we establish inclusion relations found in [1, p. 31].
Lemma 1.3.4. Let |Q] < oc.

(i) Let 0 < p1 <pa <00, 0<q1,q2 < o0, and o, 3 € R. Then
Ly, 4.(log L)3(2) — Ly, 4, (log L) (92).
(il) Let 0 < p < o0, 0< q1,q2 < 00, and o, 3 € R such that either
@1 < q2 and a>p

or
1 1
q1 > Q2 and a+— >0+ —.
q1 q2
Then

Ly, (log L)o(2) = Lyp,q,(log L)5(€2).

One can generalize the Lorentz-Zygmund spaces even further by replacing the
logarithmic term in the definition by an appropriate function. Such functions will

be introduced in the next section.

11



1.4 Slowly varying functions and Lorentz-Karamata
spaces
The definitions and assertions in this section are taken from [11, pp. 87-89].

Definition 1.4.1. A nonnegative measurable function b on (0, o) is said to be slowly
varying if, for each ¢ > 0, there are nonnegative measurable functions g. and g_.
such that

(i) g is non-decreasing and equivalent to t°b(¢) and
(ii) g—_c is non-increasing and equivalent to t=¢b(t).
By SV we denote the set of all slowly varying functions.
Theorem 1.4.1. Let b, by, and by be slowly varying functions.
(i) Then biba, b(1/t), b", r € R, and b(tp), p > 0, are slowly varying.

(ii) Fore >0 and k > 0 there are positive constants c. and C; such that
cemin(k™ %, k%)b(t) < b(kt) < C. max(k®, k™ °)b(t)

for every t > 0.

(iii) For a >0 and 0 < q < oo we have

(/ t{T“bm}qdf); ~ ()

( /t w{f—ab(f)}qd:); ~ EO(8).

(iv) Let |6] € (0,1) and d € SV. Then d(t°b(t)) is slowly varying.

and

Proof. Let b, by, and by be in SV and let g4, gl., and g%. be the corresponding
functions from Definition 1.4.1.

(i) The equivalences tby(t)ba(t) ~ g€1/2g§/2 and ¢t by (t)ba(t) ~ 91—5/2935/2 prove
that b1bs € SV.

Let r € R. If r > 0, then

t07 () = (t/7b(t))" ~ (9./r(1) "

12



which is non-decreasing. If » < 0, then

() ~ (g9—cp (1),

which is also non-decreasing. The equivalence with non-increasing functions works
in the same way. So, b" € SV.

If we replace t by % in the equivalences
t°b(t) ~ g and t°b(t) ~ ge,
we get
—e7.(1 1 en(l 1
Eb(3) ~9e(3)  and £B(3) ~ 9o ()
It follows that b(%) e SV.

Let € > 0. It holds
1(17) = P[] °b(t7).

Thus, if we choose ¢ sufficiently small and take into account that b € SV, we can
find a non-decreasing function that is equivalent to t* b(tp). Analogously, we see that
the non-increasing part of the definition is satisfied as well.
(ii) For each € > 0, kK > 0, and ¢ > 0 we can write b(kt) = (kt) ¢(kt)b(kt) to see
that
b(kt) ~ (kt) “ge(kt) and b(kt) ~ (Kt)g—c(kKt).

If % € (0,1), then

b(kt) < Ce(kt) ge(t) < Ce(kt) “t°b(t) = K™ °b(2),
and if £ > 1, then

b(kt) < Co(kt)Sg_o(t) < Co(kt)*t=5b(t) = KEb(1).

The lower estimate can be proven analogously.

(iii) Let o > 0, 0 < ¢ < 00, and ¢ > 0. By a simple calculation it follows that

t d 1 t d L
taw</ Taq7->qrv</ TaqT>q.
t/2 T 0 T

13



If 7 € (t/2,t), then, using (ii) with e = 1,

b(r) = b(Tt) > cmin(f, Doty > ¢

T

Therefrom and from Definition 1.4.1 it follows

e~ ([ o) < ([ nnp )

2
- </Ot{7a”/29a/z(r)}q d;) < Gaso(t) </Ot{7a/2}q d:)

~ Gaja (D ~ t70(1).

To prove the second equivalence we use

2t 1 e’} L
A ()
t T t T

b(t)
b(r) 2 by

and

with 7 € (¢,2t) and follow the same arguments.
(iv) At first, assume that 0 < 6 < 1. Then, for every € > 0,

t=d(t°b(t)) = t=1=b(t) == [£b(t)]7d(¢°b(t))

—&

is equivalent to a non-decreasing function, because b(t)~¢ is slowly varying as well

and (1 — §) is positive. Analogously we see that ¢t=°d(t°b(t)) is equivalent to a
non-increasing function. Now let —1 < & < 0. Then, according to the first step and
(i), d(t°b(t)~"') is slowly varying. Consequently, again by (i), d(t°b(t)) € SV. O

Remark 1.4.1. If b € SV, we can choose the functions given on the left-hand side
in Theorem 1.4.1 (iii) as g, and g_o. That means in particular that in Definition

1.4.1 we can assume without loss of generality that g. and ¢g_. are continuous.

Example 1.4.1. We put

l1(t) := 1+ [logt],
Io(t) :=1+ [log(1 + [log?])|, and
li+1(t) =1+ \log(li)|, for i € N.

14



Let N € Nand & = (ay,...,ay) € RY. Then

is slowly varying.

Proof. We put Iy (t) := 1+[In(t)| and [ 41 (t) := 1+]1n(l~i)] fori € N. Fort > 0, we put
f(t) == t51;(t). Now, for each £ > 0 we have to find a monotonically non-decreasing

function g. that is equivalent to f. By differentiation, we get for ¢ # 1

ift>1,
t]_l if0<t<l,

i (O)a(t) - L] i > 1,

Hfo<t< 1.

Consequently, if e > 1, we can put g (t) := f(t) because f is monotonically increasing
in this case.

Suppose now that 0 < ¢ < 1. We see that f is strictly monotonically increasing
on (1,00). In (0,1) one finds exactly one tg, such that f/(tg) = 0 and f is strictly

increasing on (0,tg) and decreasing on (o, 1). So

fit)y ifo<t<ty,
g=(t) :=  f(to) ifto <t <1/to,
f@t) ift>1/tg

is monotonically non-decreasing and equivalent to f.

In a similar way one can show that there is a non-increasing function equivalent
to t7¢l; (t) for every € > 0. We have shown that l; is slowly varying. Consequently,
l; is slowly varying for each ¢ € N and with the help of Theorem 1.4.1 (i) it follows
that \g € SV. O

Definition 1.4.2. Let Q@ C R™ and let 0 < p,q < 0o and b € SV. The Lorentz-

Karamata space Ly 4.(S2) is the set of all measurable functions on € such that, for

15



q < 00,
1Ll = ([~ 000 0} )" <.

In the case ¢ = oo we proceed as we have done in the definition of the Lorentz and

Lorentz-Zygmund spaces.

For this definition we refer to [6, p. 112] and [11, pp. 97-98]. In [6, p. 112 ff]
some interesting properties of these spaces are proved. For example, as in the case
of Lorentz and Lorentz-Zygmund spaces, if 1 < p < oo and 1 < g < oo, we get an

equivalent norm in L, 4. if we replace f* by f**.

Example 1.4.2. If b(t) = 1, then L, 4.,(€2) coincides with the Lorentz space L, 4(£2).
If b(t) = (1+ |logt|)® with a € R, then Ly, ;,,(£2) equals the Lorentz-Zygmund space
Lp,g(log L)a(€2).

Example 1.4.3. Let & = (oy,...,ay) € RN, If we put b(t) = A\g, where Ay has

the meaning of Example 1.4.1, we denote the outcoming spaces by
Lp7q;b(Q) = Lp,&,q(Q) = Lp,al,n-,aN,q(Q)-
These spaces are called generalized Lorentz-Zygmund spaces and have been studied

in 9], 7], [19], [8], [10]
If ¢ = p we denote these spaces by L, () = Lpoy,.ay (Q).

16



2 Interpolation

2.1 Classical Real Interpolation

This introductory section about interpolation is based on [3].

Let Ap and A; be quasi-normed vector spaces. We call the couple A = (Ag, A1)
compatible, if there exists a Hausdorff topological vector space ¢ such that Ay and
Ay are continuously embedded in .#7. Then we can form their sum and intersection,

where the sum is given by
Y(A)=Ag+ A1 ={a€H: a=ag+a1,a0 € Ap and a; € Ay}

and the intersection by

A(A) = Ag N A

We can equip these spaces with the quasi-norms

lal=(A)]| = (laolAoll + [las|Ax]])

amitar
and
la|A(A)[| = max(||a] Aol [|al A1)
respectively.
Lemma 2.1.1. If Ag and A1 are complete, so are Ag + A1 and AgN A;.

Proof. The proof is carried over from the Banach space version |3, p. 25| as indicated
in [3, p. 63]. We use Lemma 1.2.2. Let ¢; be the constant in the triangle inequality
of A;,i=0,1, and put ¢ = max(cg, c1). Define v by (2¢)7 = 2.

Assume that

o0
> llajl Ao + A" < oo.
j=1

Then, we can find a decomposition a; = a?- + ajl-, such that

lla3] Aol + llaj|A1l| < 2l|a;|Ao + Ad].

17



It follows that

o o0
D ladAo)" <00 and D flai|A]” < oo
j=1 j=1

Because Ap and A; are complete, > a? converges in Ay and ) ajl- converges in Aj.
J J
Put a® = Za?, a' = Za}, and a = a’ + a'. Then a € Ag + A; and
J J

k k k
o= 2 aslao+ ]| < o = 3o afo]| + ! = 3|
j= j=1 j=1
Consequently a; converges in Ag + Ay to a. We proved that Ag + Ay is complete.
Now, let us consider the completeness of AgN A;. Let a; be a Cauchy sequence in
ApNAq. Then a; is a Cauchy sequence in Ay and in Ay, respectively, and since they
are complete, there are elements a; € A;, i = 0,1, to which a; converges. Because
Ap and A; are continuously embedded in a Hausdorff space, we have ag = a1. So,

a; converges in Ag N Ay to a :=ag = a;. O

Let Z(A, B) be the space of all bounded linear Operators from A to B, where A
and B are quasi-normed linear spaces. If A = B we write .Z(A) instead of £ (A, A).
For two compatible couples A = (Ag, A1) and B = (By, B1) we write

T e Z(A B),

if T € £(%(A),%(B)) such that Ta, € £ (Ao, By) and Ta, € Z (A1, By). Here T¢
denotes the restriction of T' to the space C, although in the sequel we will often call
the restriction of an operator by the same symbol as the original operator. We will
write .Z(A) instead of Z(A, A).

Definition 2.1.1. Let A = (A, A1) and B = (By, B1) be two compatible couples

of quasi-normed spaces.

(i) A quasi-normed space A will be called intermediate space with respect to A, if

A(A) — A — X(A).

(i) An intermediate space A is called interpolation space with respect to A, if for

every T € Z(A) the restriction of T to A is in Z(A).

18



(iii) Let A and B be intermediate spaces with respect to A and B respectively.
Then we say that A and B are interpolation spaces with respect to A and B,
if T € Z(A, B) implies that T € £ (A, B).

It follows, that 3(A) and A(A) are interpolation spaces with respect to A. Next

we vary the quasi-norms in these spaces by a parameter ¢.

Definition 2.1.2. Let A = (4g, A1) be a compatible couple of quasi-normed spaces
and let ¢t > 0. We put

K(t,a) = K(t,a;A) = inf (||a0|A0|| —l—tHal\AlH)

a=ao+ai

for a € ¥(A) and

J(t,a) = J(t,a; A) = max(||la] Ao ||, t]|a| A1]])

for a € A(A).
K(t,a) is called Peetre’s K-functional and J(t,a) Peetre’s J-functional.

For applications of Interpolation Theory to concrete function spaces later on, we

will need the K-functional for Lebesgue spaces.

Example 2.1.1. Let 0 < r < oo and f € L,(2) + Loo(€2). Then

K(t, f; Ly, Loo) ~ ( " f(s)" C(Z:>T

0

If r = 1 we have even equality.

Proof. A proof can be found in [3, pp. 109-110]. See also |2, pp. 74,75,298|. O]

Lemma 2.1.2. For any a € Ay + Ay, K(t,a) is a positive and increasing function
of t. For all s,t > 0 holds

K(t,a) <max(1,t/s)K(s,a),
which tmplies
min(1,¢)||alAdo + A1|| < K(t,a) < max(1,t)|alAo + A1].
Furthermore, for a € Ay N Ay, it holds

K(t,a) <min(1,t/s)J(s,a).
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Proof. The proof is taken from [3, pp. 38,42].

To prove the first inequality we write

K(t,a) = in

t t
_inf (JlaolAol| + “sllar] A ]| ) < max(1, - ) K (s, ).
a=ap+ai S S

For the last inequality take a € Ag N A;. Then
K(t,a) < lalAo| < J(s,a)

and ; ;
K(t,a) < g5||a|A1H < ;J(s,a).
O

Lemma 2.1.3 (The fundamental lemma of interpolation theory). Let (Ag, A1) be
a compatible couple of quasi-Banach spaces, where Agy is co-normed and A is c1-
normed. Let a € Ag + Ay with

=0.

Kt
%in(l]K(t,a):O and lim (t,a)

t—o00 t
Then, for all € > 0, there is a sequence (am)m C Ao N Ay such that

o0

a= Z am  (convergence in Ayg+ A1)

m=—0oQ

and
J(2™, am) < (3max(cg,c1) +€)K (2™, a).

Proof. See |3, pp. 45-46]. Take a € Ag + A; and let € > 0. For every j € Z there is

a decomposition a = ag j + a1 ; such that

laoj| Aol| + 27 |a1,jAr]| < (1 +€)K (2, a). (2.1.1)
It follows
hm ||a0,j|A0|| =0 and hm ||a1’j|A1|| =0.
J——00 J—00
Put

Uj = ao,j — 0,j-1 = A1,j—1 — A1,5-
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Then uj € AgN A; and
M

a — E U; = a —ag,M + a0, —N-1 = ag,—N—1 + a1 M-
-N

Therefore, with ¢ = max(co, ¢1), we have

M

K(La="u) < c(llao-y-1 Aol + llar,ar| 4r]])-
-N

oo
It follows that a = ) wu; in Ag+ Aj.
j=—00
By (2.1.1) we get
J(27,uz) < cmax{lag|Ao|| + llao 1] Aol 2’ ar j—1|Av]| + 27 [|a;
<c(l+e)[K(2,a)+2K (27", a)]
<c(l+¢)3K(2,a).

A1}

O

Definition 2.1.3. Let (Ap, A1) be a compatible couple of quasi-Banach spaces. Let
0<f<landlet0<qg<oo.

(i) For a € Ag + A1, we put
o] 1
q
ool = (3 (K a)?)

m=—0o0

if 0 < g < 0o and
lalAg oo || = sup (2_meK(2ma a)),
meZ
if ¢ = o0.
Then the space Ag 4. i consists of all a € Ay + Ay with ||a|Ag ¢ x| < 0.

(ii) By Ag,q.s we denote the space of all a € Ag + Ay for which there is a repre-

o0
sentation a = Y. a,, (convergence in Ay + A;) with a,, € Ag N A; such
m=—00
that
o] 1
q
( Z (2_7”9J(2m,am))q> < 00 (0 < g < 0) (2.1.2)
m=—o0o
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or
sup (2_m9J(2m, am)) < 00 (¢ = 0).

meZ
We put
oo 1
. _ q
Jobdagl =int (3 (20" an)?)
m=—oo
o0

where the infimum is taken over all representations a = ).  a,, with (2.1.2).

m=—o0
For ¢ = oo we have to make the usual modification.

Remark 2.1.1. Usually, the space Ag 4k is defined by the quasi-norm

</Ooo(t9K(t, a))q‘ff);.

In the case of Banach spaces, one can introduce the space Ag 4.7 as the space of all
o0

a € Ay + Ay for which there is a representation a = [ u(t) % with u(t) € AgN 4,
0

(/Ooo(tej(t,u(t)))q ?)3 < 0.

This definition is equivalent to Definition 2.1.3.

such that

The following assertions are consequences from the more general theorems proved

in the sections below. Proofs can be found also in [3| and [21].

Theorem 2.1.1. Let A = (Ag, A1) and B = (Bg, B1) be compatible couples of
quasi-Banach spaces. Let 0 < 0 <1 and let 0 < ¢ < 0o. Then Ag 4.k and By 4.k are
interpolation spaces with respect to A and B. It holds

IT|-2 (g, gt Bogii )l < IT1-Z (Ao, Bo)|*~°|I T2 (A, By)l’

for all T € £ (A, B).
The same is true for J instead of K.

Theorem 2.1.2. Let (Ag, A1) be a compatible couple of quasi-Banach spaces, 0 <
0 <1, and 0< q<oo. Then

A9,q;K = A97q;J'

Because interpolation using the K or J method gives the same result, we will write

from now on Ay, instead of Ag .k or Agq.;.
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Theorem 2.1.3. Let (Ao, A1) be a compatible couple of quasi-Banach spaces. Then

the following assertions hold.
(i) (Ao, A1)oq = (A1,A40)1-9,4 for 0 <8 <1 and 0 < g < 0.
(i) If0< @ <1and0<q<r<oo, then Agq— Ap,.

(iii) If additionally Ag — A1, then
A907p - A917q

holds for 0 < 6y <61 <1 and 0 <p,q < 0.
Theorem 2.1.4. Let (Ao, A1) be a compatible couple of quasi-Banach spaces. For
i=0,11let0<q,q <00 andb;,n e (0,1). Then, with = (1 —n)by + nby, it holds

(A90,QO7 A91,!I1) q AQ#I'

777
Theorem 2.1.5. Let py,p1 € (0,00), qo,q1,9 € (0,00], let 0 < 6 < 1, and % =
lp;oe + p%- If po # p1, then

(Lpo,qoa Lpl,fh)@,q = Lpg-

If po = p1 = p, we must, in addition, assume that % = 1(1;09 + C% to get

(Lp,qm Lp,fh)@,q = Lp,q-

2.2 The function classes Bx and By

We define the function class By, first introduced by T. F. Kalugina ([17]) in 1975.
The following definition is due to J. Gustavsson (1978) who showed in [13] that it

leads to the same function class as the more difficult definition from Kalugina.

Definition 2.2.1. The function f: (0,00) — (0,00) belongs to the function class
By, if and only if f satisfies the following conditions:

(i) f is continuous and non-decreasing

_ '
(ii) For every s > 0 holds f(s) := sup J(st)

>0 f(t)
(iii) /Ooo min(l, %)f(t)% <

< 00
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Example 2.2.1. Let € (0,1). Then the function f(¢) = t? is in By and f(s) =
The following fact was pointed out in [11, Rem. 2.3 (ii)].

Lemma 2.2.1. Let b be a slowly varying function, 0 < g < o0, 0 < 8§ <1, and let

- ([ney d)

fort > 0. Then t%b(t) is equivalent to f and f € Bx.

Proof. Let b € SV and 6 € (0,1). We already showed in Theorem 1.4.1 (iii) that
t%b(t) ~ f. Now we show f € By by checking (i) - (iii) in Definition 2.2.1. It is clear

that f is continuous and non-decreasing. Using Theorem 1.4.1 (ii) we get

g _Su {Teb }Qd7>1
1) (fo{Teb )}

— sup(fo {Teb ST) }q dT)

>0 fO{T(’b )} 4

1
<0 max(se, —) < 00
SE

for every s > 0 and € > 0.

To prove (iii) we put € = min{f, 1 — 6} in the above estimate. Then

dt

/ min(1,1/t) f(t) -
0
1 00 € €
< Ce/ max(ta, 1/t6)t9 ? + Cs/ Hm(tt’l/t)t@ @
0 1

t
ot at > dt
=Ce 0 tl+e—0 +ce 1 t2—e—0 <0

Example 2.2.2. Let « € R, 0 < ¢ < 00, and 0 < § < 1. Then

1
t2(1 + |log t))® </ {T 1+ |log7])*}? ) € Bg.
We give some important properties of functions in By.

t
Theorem 2.2.1. Let f € B and let f(s) = %ng;((i)) It holds
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21(3) =1
(i) 0< f(s)f(t) < f(st) < f(s)f(t)
(iii) f and f are non-decreasing and f(1) = f(1) =
(iv) f(st) < f(s)f()
(v) lim @ =0 and lim f(s) =
Proof. The proofs are taken from [13, pp. 290-291]. (i) Let s > 0. Then

f(t/s) — sup f@)
t>0 f(t) >0 f(st) glg

1

IO

f(1/s) =

(ii) From f(s) < oo it follows by (i) that f(s) > 0. Moreover

f() 5t < L&Y

< S T < F6)0)

(iii) follows directly from the definition.
(iv) With the help of (ii) it follows

Fst) — sup LI o T/ (07)

TS R S TP = f(s)f ().

(v) We use the monotonicity of f to get for s > 0

/smm‘fzf(s)/smﬁzﬂs)

12 s

/f > 1 /esdt—f()

Now, by Definition 2.2.1 (iii) the desired assertions follow. O

and

Definition 2.2.2. A function f: (0,00) — (0,00) is called submultiplicative, if

f(st) < f(s)f ()

for all s,t € (0,00) and f(1) = 1.

Example 2.2.3. As the above theorem states, for f € By the function f is submul-

tiplicative.
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Lemma 2.2.2. Let f: (0,00) — (0,00) be submultiplicative. Then f is bounded on
each interval (z,y) with 0 < x <y < oo.

Proof. The proof is analogous to the proof of the boundedness of subadditive func-
tions in [16, p. 241]. For a measurable set A C (0,00) let pu(A) = [, %. Observe
that u(A) < |A|if a > 1 for all a € A.

First we prove that f is bounded on any interval (z,y) with 1 < z < y < oc.
Suppose f is unbounded from above in (x,y). Then we can choose a sequence
(tn)n C (x,y) such that f(t,) > n% For each n € Nlet E, = {t € (1,y): f(t) > n}.

Now, let n € N and take € (1,x). Then one can find s € (1,¢,) such that rs = t,.
It follows that n? < f(t,) < f(r)f(s). That means either f(r) > n or f(s) > n which
implies 7 € B, U{%: ¢t € E,}. Consequently (1,z) C E, U{:t € E,}.

Because of u(E,) = M(E—’;) we now have u(E,) > M = 10%. It follows that
0=|NEn| > &2

Sec:b)ndly we show that f is bounded in (0,1 + §) for any 6 € (0,1). Consider
d € (0,1) fixed. Then for all t € (4,1 + §) we have

1 <1(E)r(3) <o

because of 2¢t/§ > 2 and f is bounded in (z,y), 1 < x < y. O

For the following lemma we used [16, p. 244] and [14, p. 35].

Lemma 2.2.3. Let f be a submultiplicative function and let

log f(t) log f(t)
= d = f
“ Oiligl logt ¢ b t>1 logt
Then it follows that
1 t 1 t
(1) —oo<a:lim70gf()§6:hm ng()<oo,
t—0 logt t—oo logt

(ii) a =sup{p € R: for some 0 <7 <1 and all t € (0,r) it holds f(t) <P},
(i) B = inf{p € R: for some r > 1 and all t > r it holds f(t) < tP}.

Proof. (i) The proof is a modification of [16, p. 244|, where subadditive functions
are treated instead of submultiplicative ones.
If ¢ > 1 it follows from 1 = f(1) < f(¢)f(1/t), that

log f(1/t) _ log f(t)
log(1/t) — logt
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This implies —0co < a < G < 0.

We choose b > 1 such that loig(bb) < fB+e. Lett > 1 and choose n = n(t) € N

such that b” <t < p"t!. Then

< log f(t) _ log f(b"t/b") _ log f(b")  log f(t/b")

logt logt —  logt logt

_ logb"log f(b) , log f(t/b") (2.2.1)
logt logb logt B
log b" log f(t/b")
logt (B+e)+ logt

Since t/b™ € [1,b] it follows from Lemma 2.2.2 that f(¢/b") is bounded. So the last

expression in (2.2.1) tends to 3+ € as t — oo. It follows that lim % exists and
t—oo 08

equals .

By applying the above result to f(1/t) we get:

_ log f(t) _ ( 10gf(t)) _ ( logf(l/t)>
& = sup = - - = —inf(——F———
o<t<1 logt 0<t<1 logt t>1 log 1/t
_ e lesfQ/t) o log fA/Y) . log f(A/T) . log f(2)
t>1  logt t—oo  logt t—oo  logl/t t—0 logt
(ii) Let € > 0. Because a = %ir%% there is an r € (0,1) such that « — ¢ <
% < «a applies to all t € (0,r). It follows that

< f(t) <t

for all t € (0,7). So « is the supremum of all p € R with the property mentioned
above.
(iii) Analogously to (ii) it follows that for all € > 0 there is an r > 1 such that

holds for all t € (r,00). This proves (iii). O
Lemma 2.2.4. Let f € Bx. Then
(i) There exist € >0 and so € (0,1) such that f(s) < s for 0 < s < sq.

(ii) There exist e > 0 and s1 € (1,00) such that f(s) < s'7¢ for s > s1.
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(iii) It holds

/Ooo{min(l, %)f(t)}p% < 00

Proof. (i) In Theorem 2.2.1 (v) we showed that lir% f(s) = 0. So, in particular there
are £ € (0,1) and 5 € (0,1) such that f(3) <& We can conclude that

for any p > 0.

log € < log f(3) <a

0< logs = logs —

where o = sup M

. Because of Lemma 2.2.1 (ii) assertion (i) is proved.
0<s<1 Iogs

(ii) Similarly to (i) we can conclude from lim /s = 0 that there is an € > 0 and
s—o0 8§

an § > 1 such that f(3) < £3. Consequently

log f(s) < loge

<
b= logs ~ logs

Now (ii) follows from 2.2.1 (iii).
(iii) Using (i) and (ii) we get

[ fon(s 0y
< /OSO£)+/SI{min(1,Df(t)}pcitJr/:otflfep<oo.

S0

O

Now we define the class By and prove basic properties as it has been done in [13,
p. 292].

Definition 2.2.3. The function class By consists of all continuously differentiable
functions f: (0,00) — (0,00) such that

Lf'(t) L)
RO N0

Example 2.2.4. For 0 < # < 1 and « € R the function f with

> 0.

f(t) =t (In(1 +17))*

belongs to By, if v > 0 is sufficiently small.
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Proof. Because of

tf'(t) _ ayt?
ft) o+ (14+7)In(1 4 t7)
we get
tf't) _ e
i e
and )
%r>1£ o) = min(6, 0 + a).

Lemma 2.2.5. (i) It holds By C Bg.
(ii) For each f € By there exists g € By such that f ~ g.

Proof. (i) Let f € By. Because of f/(t) > 0, Definition 2.2.1 (i) is satisfied. For
t,s > 0 we define

and put p = inf t?(—g) and ¢ = sup t}”(—g) Then

It follows that

This implies

/ /!
<ht(8)> >0 and (ht(8)> <0.
sp s4
Because hi(1) = 1 we can conclude hy(s) < sP,if 0 < s < 1 and he(s) < s%,if s > 1.
Consequently, f(s) < max(s?,s?). Therefrom we obtain (ii) and (iii) of Definition
2.2.1.

(ii) Let f € B and put

It holds
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and
o0 1 dt > 1\ -
o) = [ min(17) f60) F < 160) [ min(1.7) 70 F = ef ),
which proves that f ~ g. Since f is continuous and

AN % £(t) dt
9(5)—/0f(75)t+5 s
we find

t

g'(s) =/Oof(t)it-

Consequently, g is continuously differentiable and from

R fit) - /100 o= L0 /loo FOE _ erss

t Tt ot
and ! dt s dt L dt
aft) <16 [ 105 < [ 10T <16 [ F0F = s
t
we ge /S f(t) @
c2 0 t
Now it follows that
f 59'(5) >0 and sup 59'(5) < 1.

in
s>0 g(s) s>0 9(s)

2.3 Interpolation with function parameters

We now want to modify the real interpolation method by replacing t’ by a more
general function p: (0,00) — (0,00). Several authors have done that and defined
classes of admissible functions. Kalugina [17] and Gustavsson [13] used functions in
By and in By, Persson [20] defined Q(0,1) and Gustavsson and Peetre [14] defined

the class #1~. It turned out that all these classes of functions coincide in the
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following sense (see Lemma 2.2.5 and |20, Prop. 1.3|).
B\IJ - B’Cv

By CQ(0,1) C 2t

and for a function g in By or 2T~ there is a function in By, that is equivalent to
0.

Later on we also want to use functions of the form o(t) = t’b(t), where 6 € (0,1)
and b € SV. We have seen in Lemma 2.2.1 that for each of those g there is a function
f € By that is equivalent to . To cover all these types of function parameters we

make the following definition.

Definition 2.3.1. We say that a function g: (0,00) — (0, 00) belongs to F'P if and
only if there is a function f € By such that o ~ f.

Definition 2.3.2. Let (Ap, A1) be a compatible couple of quasi-Banach spaces. Let
o€ FP andlet 0 < q < 0.

(i) For a € Ag + A, we put

[e'e) 1
K(2™ a)?\
||a|Ag,q;KH :< E > )
e (271
if 0 < g < 0o and
K(2™,a)
alAg ook || = sup ——+—,
Il Aoocutcll = 200 =) am)

if ¢ = o0.
Then the space A, 4.k consists of all a € Ay + A1 with ||a|Ayq k] < 0.

(ii) Let A, 4.7 be the space of all a € Ag + A; for which there is a representation
oo
a= Y. an (convergence in Ag+ A;) with a,, € Ag N A; such that

m=—0oQ

(27, am)T\
(3 Tmt) < @<e<w sy
or J(2m’am) B
Z%I%W < 00 (g = 00).
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For 0 < ¢ < co we put

oo 1
. J(2m7 am)q q
Ha|ALNI§JH = lnf< Z Q(2m)q ’
m=—o00
[e.°]
where the infimum is taken over all representations a = > a,, satisfying

m=—00

(2.3.1).

For ¢ = oo we put

. J(2™, ap,)
lalAg,o0;s|| = inf sup ———"==
e me”Z Q(2m)
Remark 2.3.1. If 01,00 € FP with g1 ~ g2, then ||a|A,, x| ~ ||a|Ag, ¢k | and
llalor, ¢; JI| ~ lla|Agy g 1l-
Next we show that the sum in the definition of the K-method can be replaced

by an integral. We will not do that for the J-method, because we want to avoid

integration of functions with values in a quasi-normed space.

Theorem 2.3.1. Let (Ap, A1) be a compatible couple of quasi-Banach spaces, let
0€ FP, and let 0 < g < oco. Then

lalAggsrc || ~ </OOO o(t) K (t,a) %

Proof. Let f € By such that f ~ p. Using Lemma 2.1.2 and Theorem 2.2.1 (ii) we

obtain the estimates

2m+1

/f )UK (t,a)! Z/ )UK (t,a)! it

m=—0oQ

< log?2 Z F2™)TIK (227, a)

m=—00

<2%log2 Y f(2™) UK (2™, a)

m=—0o0
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and

2m+1

/Ooof()tha Z/ ) IK(t,a)! — dt

m=—0Q0

> log 2 Z f(2-2™)7IK (2™, a)d

m=—0oQ

> f(2) Mlog2 3 FE@M) UK (2™, ).

m=—00

O

Lemma 2.3.1. Let (Ao, A1) be a compatible couple of quasi-Banach spaces and let
o€ FP. Then

(i) K(s,a) <co(s)|la|lAg gkl for all s >0,

(i) |la|Apqxll < ——J(s,a) for all s >0,

o(s)
(ili) (Ao, A1),k = (A1, Ao)g,qk, where o(t) = to(1/t).

Proof. Let f € By such that o ~ f. We make use of Remark 2.3.1.
(i) We have K(t,a) > min(1,¢/s)K(s,a) by Lemma 2.1.2. Together with the

monotonicity of f we get
1
’ —q g b\
lalAfqxll = ; FOTIK (8 a)T

> oy Ko [ i 0 )’

— F(5) K (s, 0)
qq

(ii) Lemma 2.1.2 implies K (s,a) < min(1, £).J(¢,a). It follows

1 R q
= J(s, a)f(s)< ; min(1,t)
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The convergence of the integral has been proved in Lemma 2.2.4 (iii).

tq' (t 1/t /(1
(iii) Put g(t) = tf(1). We have g(i)) =1- W and, consequently, g € By.
g
Because of ¢ ~ g we have ¢ € FP. Using K(t,a;Ag, A1) = tK(Yt,a; A1, Ag) it

follows

taf(1/t)e t
_ /°° K(t,a; Ay, Ag)? dt
0

la|Afqx||? = /OO tUK (11, a3 Ag, A1) dt

g(t) t
0

Theorem 2.3.2 (Equivalence theorem). Let (Ao, A1) be a compatible couple of quasi-
Banach spaces, let 0 < ¢ < 0o and let o € FP. Then

Ag,q;K = Ag,q;J-

Remark 2.3.2. If we put o(t) = t? for some 6 € (0,1), then we get the classical
Equivalence Theorem (Theorem 2.1.2).

Proof. Let f € By such that o ~ f. We first prove A;,.; — A;, k. Let a =
[ee]
Y. am € Apgg. Recall that K(t,a) is a c-norm on Ag + Ay for all ¢ > 0. We

m=—o00
can choose the constant ¢ in the c-triangle inequality of K (¢,a) large, such that =,

defined by (2¢)” = 2, is smaller than ¢q. Therefore we have p := % > 1. From Lemma

1.2.2 and Lemma 2.1.2 with s = 2™ we obtain

oo 1

K(t,a) g( 3 (K(t,am))’*)”

m=—00

(e 9]

< ( 3 (min(1,t2—m)J(2m,am))7>

m=—0o0

2=

Now we put ¢t = 2" and find

[e.9]

( Z (min(l,Q”_m)J(2m,am))7>

m=——0Q0

2=

K(2",a)

IN

[e.e]

( ) (min(1,2m)J(2n—m’anm))v>

m=—0o0

2=
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Using Minkowski’s inequality for infinite series (see [15, p. 123]) we obtain

1

lal Ay gixcll = (nim o ))
(S orsar)
<<[i: vm:ioomin<1,2m>w<zn—m,anm)v)p]éy
< (mi min(1, 27y Lic " H)
(£ eS0T
g(mi 20 yL:im(J(fz )])
- (£ fnte o)) [ £ (S )

m n=—0o0o

We applied (i) and (ii) of Theorem 2.2.1. The convergence of the integral in the last
line follows from Lemma 2.2.4. Taking the infimum over all appropriate representa-
tions leads to

lalAf.qxll < CllalAf g1l

Now we show the converse. Assume a € Ay 4. k. From Lemma 2.3.1 and property
(v) of Theorem 2.2.1 follows that
K(t,a) <cf(t)alArqxl — 0, t—0

and

K(ta) _ J(t)
ha) ¢

Therefore we can apply Lemma 2.1.3 to get a representation a = Y a,, such that
m

J(2™, am,) < cK(2™,a). It follows

la|Asgxll =0, t— oo

[e.9]

(5 ey o 3 Kmary

m=—00 m=—0Q0
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This gives the estimate ||a|Ayq.s|| < Clla|Afq:x]- O
From now on we will omit K and J in the notations.

Theorem 2.3.3 (Interpolation Theorem). Let (Ao, A1) and (By, B1) be compatible
couples of quasi-Banach spaces, 0 € B, and 0 < g < 0o. Then

(i) AgNA; — AQ’q — Ag + A1,
(i) Agq is a quasi-Banach space, and,

(iii) if T is a bounded linear operator from A; to B; with norm M;, i = 0,1, then
T is bounded from A, q to B, 4 with norm M and

M < Mo@(%é)-

Remark 2.3.3. If we put o(t) = ¢/, we have proved Theorem 2.1.1.

Proof. As in [13, p. 295|, the proof follows the classical case |3, pp. 47, 64].
(i) For a € Ag N Ay, we have

K(t,a) < lalAoll  and  K(t,a) <t|afAl],

which implies K (¢,a) < min(1,t)|la]Ao N A;]|. It follows that

el = ([ ()" 5)’
< (/f(W)“f)qumAlu
< c</ooo (min(l, 1/t)@(t)>q i’f)énamo N Al
— Clla|Ao N Ay].

Putting s = 1 in Lemma 2.3.1 (i) leads to

lal Ao + Al < co(1)[lalAgq

(ii) Because K (t,a) is a equivalent quasi-norm on Ap + A; (see Lemma 2.1.2) it
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only remains to prove the quasi-triangle inequality. Let a,b € A, 4. Then
1 1
* K(t b)\a dt\« * Kt K(t,b)\a dt\q
(2 2) =522
0 o(t) t o N ot) oft) /¢
1 1
©/rK(t,a)\adt)« ©/K(t,b)\adt\«
< — — .
<o o)) = (s

To prove the completeness we use Lemma 1.2.2. Take a sequence (aj); C Agyq

o0
with )~ |la;|A;q]|" < oo, where (2¢)” = 2 (c is the constant in the quasi-triangle
j=1

(o]
inequality) and v < g. Because of A, , — Ay + Ay we have ) |jaj|Ao + A1||7 < o0.
j=1
Since Ag + A;j is complete (see Lemma 2.1.1) there is an element a € Ay + Ay and
lla — a;|Ag + Aq]| — 0.

Then, with the help of Lemma 1.2.2 and Minkowski’s inequality,

s
o
)
Q:
7 N
\
8
l_|
=
[}
=
/\
M@
—
[}
~|%
"
Q|

IN

o0

> e Aual? ) <

(Z[ (t?j)y 7
( 5

(iii) It holds

K(t,Ta;Bo,Bl) u 1nfa (HTCLO|B()H —i—tHTa1|BlH)

< inf (M0||a0|Ao|| +tM1Ha1‘A1H).

~ a=ap+a1

This gives
M
K(t,Ta; By, B1) < MOK(Mlt,a; Ao,Al),
0
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and we get

1
iroipgl~ ([ {FETE )

t
<M < & K tMl/M(),a Ao,Al)} q dt )‘11
- 0 o(t) t
1
°° K(t,a; Ao, A1)\ dt)q
— M, at
(/0 o(tMo/My) } t
My
< M, (E)Ha\A

O

Theorem 2.3.4 (The Reiteration Theorem). Let (Ao, A1) a compatible couple of

quasi-Banach spaces. Let 0 < qq,q; < 00 and gy, 01 € F'P such that 91 s equivalent
%
to a continuously differentiable function T that satisfies

tr'(t
0<d< T

for allt > 0 and some & and b.
Let p € F'P and put

Then o € F'P and for 0 < g < oo holds

(Ago,qo ) A91 g ) oq Ag,q

with equivalent norms.

Proof. The proof follows the Banach space case in [13, pp. 296 - 299].

At first we assume that

Then 7 € By. Take fo, fi,g € By which are equivalent to g, 0, ¢, respectively
and put f(t) = fo(t)g <f0 ) and f(t) = fo(t)g(7(¢)). Since g is monotonically

increasing, it follows that f ~ f ~ o. Next we show f € By, which implies that

: g ) s e tg (1) — PHQ) ‘(1)
f,0 € FP. Putting u; = inf AOE inf g(t) ) Vi = SUp gy, and v = sup g()
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1=0,1, we find

. A (D) A o A1)
tf'(t) _ tfo(t) (1 B fo(t)gl<fo(t))> N tfi(t) fo(t)g/(fo(t))
f(e) folt f(t) t f(t)
f(t) fo(t) g(fé(t)) fi(t) g<f(1)(t))
tf5(t)

Using o) < 1 we get

~ f1i(t) o fr(t)
oy _ ke (4) (0
f(®) g (29
<1+ /~L(V1 - ) <1
Furthermore B
tf'(t)
——= > po(l —v) + pp > 0.
f(t)
Let us draw a few conclusions from * ((i) > 6 > 0, which we will need in the proof.
e O _ (W) AT 7l
T(t tT(t T(t
M) = >
( 0 > ( T(t) +6> to+1 — 26t6+1 0,
t
which implies that Tt(é) is monotonically increasing. For all 0 < t; < 9 then holds
t1\9
< -
() < 7(t)(77)
and b d
2
> =
r(t2) 2 (1) ()

This implies

%in(l) T(t) =0 and tlim 7(t) = o0.

Because 7 is strictly increasing and continuous, it follows that it has an inverse

function n for which holds

1_sif(s) ()7 ()"
b= ils) ‘( ) =

This will be used later on for substitution in integrals.
Now we will show that (Afo’qO7Afl7q1)g,q — Afq Put X; = Ay, 4,4 =0,1. Let
a € (Xo,X1)g,q- Let a; € X;,7=0,1, such that a = ap + a;. By Lemma 2.3.1 (i) we
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get, using the equivalence % ~T,

K(t,a;Ao,Al) < K(t,ag;Ag,Al) + K(t, al;Ao,Al)
< c(fo(t)|aol Xoll + f1(?)[lar][Xq])
< cfo(t)(lao| Xoll + 7(t)[[a1]X1]]).

It follows that K (t,a; Ag, A1) < cfo(t)K(7(t), a; Xo, X1). If we make the substitution

t = n(s) and use the observations made above, we get

o0 . q
HﬂM&&MdWNA F“ww%Aﬂ]w

fot)g(r(1)) t
T K(7(t),a; Xo, X1)]? dt
: C/o g(7(t)) ] t
o [y i
o L g(s) n(s) t
: C/o g9(s) ] t

= C||CL‘ (Afo,q07 Athl)gﬂHq.

For the converse embedding, Gustavsson uses the substitution method in integrals
of Banach space valued functions. Because we want to avoid integration of quasi-
Banach space valued functions, we transferred the proof of the quasi-Banach case
found in [3, pp. 67-68] to general function parameters.

Take a € Ay, and let X; be as above. We will show [[a|Xyq]| < cllalAsqll-
As above, n denotes the inverse function of 7. Then, substituting ¢ = 7(s), using

S:;S) < 1, and changing s back to t, we get

IMXM1~<AWFQMQ§M&WQ?)3

_ </OOO [W}((t,a; Xo,Xl)]qcitfl

< c</ooo [J;?((;))K(T(t),a; XO,Xl)]q Cff)

m=—00

Q=

For the last inequality we used Theorem 2.3.1.
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(e.0)
We choose a representation a = > u, with u, € Ag N Ay, such that

n=—oo

o0
Z F(2™)79T(2", up; Ag, Ay) < 00
n=—00
Let C be the constant in the quasi-triangle inequality of Ay + A1, and define v by
(2C)Y = 2. If C was chosen large enough, we have v < ¢. From Lemma 1.2.2 then

follows for every m € Z

2=

K(t,a; Xo, X1) < c(z K(t,um_n;Xo,X1)7> (2.3.2)

Lemma 2.3.1 (ii) gives

f1(2") J(2", un; Ao, A1)
fo(27) oz 1H} =¢ fo(27)

Consequently, applying Lemma 2.1.2, we get

J(7(2"), un; Xo, X1) < cmax{”un]XoH,

0

7_(2m) } J(2m—n7 Um—n; Ao, Al)
T(2m ) fo(2m=m)

K(T(sm),um_n;Xo, Xl) < min{l,
(2.3.3)

< cmin{l,

Combining (2.3.2) and (2.3.3) we see

2
v
Q=

la| X4l < (Z {Z fo(2™) 'YK( (2m),um_n;X07X1)“/}

m

<c<2f (2m) { an min{l,q_g?:jl)}vjﬂm”,um_n;Ao,Al)’Y}

2
Q=

)

Using Theorem 2.2.1 (ii) we can seperate the variables m and n. In fact, it holds

fo(2™)
f0(2m—n)

@™ (@)
oz fzmy ~ o) and

IN

e =T
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Then, since % > 1, we can apply Minkowski’s inequality and get

2|~

oKyl < (32 2 min{1, 7207 [ F2) " s A1)

Q|2
N—

Finally, by replacing m by m + n in the last sum and by

£ > fo(2Mg(2(2) fo(2™)g(7(2))

we get

1 < (30 B mintn e ratrie ) (30 )

m

Now, taking the infimum, we obtain Asq = (Afy.q,> Asig,)

() _ e T2V
= <—-0<0. Weh f0, (1)

ps LTOMF ()

9,9

Next we consider the case that —b <

T(1/t)
and

Wy Ay 207

So, we can apply the first case and Lemma 2.3.1 (iii) leads to

((A()? Al)Qo:qo? (AO’ Al)@p(h)gp’q = ((Al’ AO)th(l/t)qu’ (Al’ AO)t@l(l/t)vql)tp,q
= A A t
A0y 00 (2693 0

= (Ao, A1)

o1 (®)Y -
Qo (t)‘P( Q(l)<t) ) ,q
O

Remark 2.3.4. To formulate the condition on the functions gy and o1 we replaced

T(t) = gég by 7 ~ %. We have done this, because later on we want to apply the
theorem to function parameters g;(t) = t%b;(t), i = 0,1, with slowly varying b;,
and these are not contained in By and do not even have to be differentiable. See
Corollary 2.4.1.

If we put ;(t) = t% and ¢(t) = 7 in the above theorem, where 6 = (1 —n)6 +n61,

we get o(t) = t? and receive the well known result stated in Theorem 2.1.4.

Lemma 2.3.2. Let p € FP and let (Ap, A1) be a compatible couple of quasi-Banach
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spaces. Let 0 < g < q < oo. Then
Agg = Agg-

Proof. If ¢ = 0o, the inequality of the quasi-norms follows directly from Lemma 2.3.1.

Let now 0 < ¢ < ¢ < 0o. Using Lemma 2.3.1 we get

1
q

HCL|AQ#§

_ (/j(@(t)%@, )" (o(t)~ K (£, @)1 cit)

i q
< cllalAgqll T [lalAgqll®

= C||G|Ag,q’|

Remark 2.3.5. Choosing o(t) = t?, we get the assertion in Theorem 2.1.3 (ii).

2.4 Interpolation with slowly varying parameters

Let b € SV and 6 € (0,1). We have seen in Lemma 2.2.1 that tb(t) € FP. So, we

can use t?b(t) as a function parameter and we have
[e.e]

lal Ao ol = ( 3 2—me%<2m>—qmm,a>q)

m=—00

N < /0 T () K (4, a) Cit) J

In the following theorem we collect some properties of interpolation spaces with

Q=

parameter functions t7b(t).

Theorem 2.4.1. Let A = (Ap, A1) a compatible couple of quasi-Banach spaces. Let
be SV, 0¢€(0,1), and 0 < ¢ < 0.

(i) We have (A(], Al)teb(t),q = (Al, AO)t1*9b(t*1),q-
(ii) It holds K(s,a) < cs?b(s) lal Agoppy 4l for all s > 0.

(iii) Let Ag < Ay. Let 6 € (0,1) such that 0 < 0, and let 0 < q,§ < co. Then

Aop(t),q = Atéb(t),q'
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Remark 2.4.1. If we put b(t) = 1 in part (iii) of the theorem, we get the mono-

tonicity of classical real interpolation spaces stated in Theorem 2.1.3 (iii).

Proof. (i) and (ii) follow immediately from Lemma 2.3.1.

We prove (iii). The proof is carried over from the classical case, see [21, pp. 25-27]
and [3, pp. 46-47]. From Lemma 2.1.2 and the definition of the K-functional it
follows from Ay «— A that K(t,a) = t|ja|A;| for all t € (0,1). Let # <  and let
0 < ¢ < oo. By Theorem 2.3.3, Aoy o is an intermediate space. We will now need

the fact that is is continuously embedded in A;. We can write

1 dd ~ = dt > 05 ;5 5 dt
el = [0 K@ 5+ [ 000 K 1,7
0

1

1 00 o B ~ ~
= el [ D) [0S0 T 1. 0)7
1

t 1 9 é’:‘) q dt 00 o dt
< cllalAgp(r),c0ll? / (t i > — + llal Aoy, OO||¢1/ 75(979)477
1

< CHa’At%(t

),oo” )

where we used that ¢7¢b(t) is equivalent to a non-increasing function for each ¢ €
(0,1). Then we chose € < 1 — 0 to get a finite integral.
Now we choose ¢ with 0 < ¢ < co. Then from Lemma 2.3.2 follows

Agop(t),g = Aop(t),00 A — A

t0b(t),d t0b(t),00

O

In the following corollary we formulate the reiteration theorem for slowly varying
parameters. It has been stated in [11, p. 91].

Corollary 2.4.1. Let (Ao, A1) a compatible couple of quasi-Banach spaces. For
i =0,1 suppose 0 < ¢q; < 00, b; € SV, and 6; € (0,1) with Oy # 6;.
Take d € SV, n € (0,1), and put

by (t
0= (1L—n)b+nb and b(t)= bo(t)“"bl(t)’?d@@l*@o 1 ))'
bo(t)
Then b is slowly varying and for every 0 < g < oo holds

(At"obo(t),qw Aors, (t),ql)tn dg b
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Proof. From Theorem 1.4.1 (iv) follows that b € SV. To prove the corollary, we will
apply Theorem 2.3.4 with o;(t) = t%b;(t), i = 0,1, and o(t) = t7d(t). To this end,

we have to show that g;gg = tel*‘goz{l}—gg satisfies the condition in Theorem 2.3.4. If

Oy < 64, it follows from Lemmas 2.2.1 and 2.2.5 that tGrGO% is equivalent to a

function 7 € By. Hence, the assumption for Theorem 2.3.4 is fulfilled. On the other

t01—bo bi(t)
bo(t)

hand, if 61 < 6y, we have that is equivalent to a function % with 7 € By.

Observing that

1 !/
t(m) ()
: _
oY)
we see that we can apply Theorem 2.3.4 in this case, too. O
Proposition 2.4.1. Let 0 < r < g < c0. Let b € SV, 6 € (0,1), % = 1%9, and

l;(t) - b(tl/r)_l. Then
(Lr, Loo)ion(t).q = Ly g

Proof. In Theorem 1.4.1 (i) we showed that b is slowly varying. Then, utilizing
Example 2.1.1, we get

LI (92): Loo($2)) oy o]
[ e ([ o) 4]
([ eemr([ereer ) )
([ ey )4
(L[ o et

T .
L et
([ ) (o)

= |l f1Ly, 5 (DI,

D,q;b

IN

IN

where we applied Minkowski’s inequality and used the property of slowly varying

functions stated in Theorem 1.4.1 (ii).

45



Conversely, starting with the third line of the previous estimate and using that f*

is non-increasing,
oo 1
(1=0)ap 1\ —a pr(prya W)
||f‘(LT(Q)7LOO(Q))t9b(t)7qH > 0 t b(t) f (t ) 7

o [Ty ey
_c</0t b(t+) f(t)qt>

= |l fILy, ¢z (V-

Q=

O

On the basis of Proposition 2.4.1 we can prove the following theorem. This has
been done in [11, p.100].

Theorem 2.4.2. Let b; € SV, 0 < p;,q;,q < 00, i = 0,1, such that pg # p1 and let

€ (0,1) and d € SV.

1 1-—
Put — = n+ﬂand

p bo b1

_ - 7 %*ﬁb )\~
b(t) = bo(t) by (1) d(t b‘i (t)) .

Then
(Lpo,qo;bo (Q), Lpl,qubl(Q))tnd(t),q = an;b(Q)-

1;92', i = 0,1. Applying

Proof. Let r < min(pg,p1) and let 6; be defined by I% =
Proposition 2.4.1 we get (we omit (§2) temporarily)

(Lpo,q0§b07 Lp17q1,b1)tnd(t)7q = ((LT7 Loo)tgobo(tr)ilaq()’ (LT7 LOO)telbl (t’r)il7ql>t"d(t> q'

Now, put 6 = (1 — 1)y + nf; and

2 1 1 d<t91790 bo(tr))

= by e\ )

Hence, using the Reiteration Theorem (Corollary 2.4.1),
(Lpo,qo;bov Lplvqﬁbl)t”ld(t)g = (LT7 LOO)tGB(t),q'

Observing that p = 17_9 and b(t) = B(t%)_l we apply again Proposition 2.4.1 and
the proof is complete. O
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2.5 Interpolation with logarithmic parameters

Let

Li(t) == 1+ |logt],
Io(t) :== 1+ |log(1 + [log t|)
Lia(t) =1+ [log(li(t))

)

, forieN.

ForNENandd:(al,...,aN)E]RN we put

In Example 1.4.1 we saw that A4 is slowly varying. So we can use it for interpolation

as in the previous section. For 0 < ¢ < 0o, we denote the outcoming spaces by

A97a7q = A97a17"’7a1\77q = Atgkd(t),q'
That means

[e) 1
q
lalAg.a,,..ay.all = ( >~ {2 ) ---lN(2m)_"NK(2m,a)}q>

1
& dt\ «
~ (/ {tall(t)al---lN(t)“NK(t,a)}qt)q
0
Lemma 2.5.1. (i) Let f,g: (0,00) — (0,00) such that f ~ g. Thenliof ~ljog.
(ii) Letr € R. Then l1(t") ~ 11(t).
(iii) Let N €N, & = (ay,...,ay) € RN, and r € R. Then As(t") ~ Aa(t).

Proof. (i) We have f(t) < c1g(t) and g(t) < cof(t) for all t > 0. If f(t) > 1, we can

write

1+ flog (£(1)] < 1+ llog(e19(t))| < (1 + log e1]) (1 + [log (9(1)] )

If 0 < f(t) <1, then

1+ log (f()] < 1+ log(9(1)| < (1 + flog 1) (1 + og(9()] )
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So, we arrived at

1+ [log(f(1))| < max(1+ loger], 1+ llog ea]) (1 + [log(9(1))1)

for all ¢ > 0. The same holds if we exchange f and g.
(ii) With r € R we have

min(1, |7])(1 + [logt]) <1+ |r||logt] < max(1,|r|)(1+ [logt|).

(iii) From (i) and (ii) it follows I;(t") ~ [;(t) for all i = 1, ..., N. Consequently, we
get (ii). O
The following lemma shows that, if Ay — A, we only have to consider t > 1 to

characterize logarithmic interpolation spaces. This properity is mentioned in [5, p.
234].

Lemma 2.5.2. Let (Ag, A1) with Ag — Ay, 0 € (0,1), and 0 < ¢ < oo. Let N € N
and & = (aq,...,ay) € RN, Then

1

1
00 dt\ @ e P
Ha‘Ae a qH ~ </ tquAa(t)qu(t, a)q ) q ~ ( E tiqud(Qm)qu(Qm, a)q) q .
2 k) 1 t

m=1

Proof. Because of Ay — A; it holds, if 0 < ¢t < 1, that K(¢,a) = t||a]A;||. Using

Lemma 2.5.1 (iii) and Lemma 2.1.2 we can write

1 1
| etk o = [0 al e
0 0

_ 90 > =09y _ ()4 qdl
125 T el
0 o dr

< 19 . T_eq)\@(T)_qK(T, a)? —

__0
Here we made the transformation ¢ = 7~ 7-¢. Now we have

| dt
i< L / () K (1)
1

laldsaqll? < 1=

Since the converse inequality is trivial, the result follows. O
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Lemma 2.5.3. (i) For alle >0 and & € RY it holds

/°° dt -
— < 00.
1 t1+5>\@(t)

(ii) Letj € {l,...,N} and @5,y €RC Then

& dt
/1 F (D) (8) LT L (% Iy (D)

< 00,

for all e > 0.

Proof. (i) Because °1;(t)% — oo ast — oo forall § >0 and a; € R, i = 1,..., N,

© g1 L [T
T W s B AT PP W TSR AT

(i) Let € > 0. For t > 1 let f(t) := —11;(t)~°. Then

we have

1
Tth() L () T

F1) =071 4

Therefore

/°° dt 11
N G R GINCE=F Eh=
Then, as in the proof of (i),

& dt
/1 Eh(t) - - Lima (8) L) i ()% -+ In ()

o0 1 1
_ . dt
/1 th(t) - Lo (&) OM2 ()2 L ()% I ()N

°° dt
< < oQ.
B 0/1 tl(t) - Ljoa () 1(2)He/2 o0
U

The next theorem is a generalization of a theorem about Lorentz-Zygmund spaces

given in [1, pp.31-32].

Theorem 2.5.1. Let (Ap, A1) be a compatible couple of quasi-Banach spaces with
Ay — Aq. Let N € N,

49



(i) Let0<f8<0<1,a%aleRY, and 0 < q,§ < 0. Then

Agaog = Agarg

(ii) Let 6 € (0,1), a° = (ay,...,ay) € RY and a' = (ay,...,ay) € RN, If there
is a number j € {1,..., N} such that either

q<q op=aq, fork=1,...,5-1, and o; <aq, (2.5.1)

or
1 1 1 1
q>q oqy—ap=—=——, fork=1,...,7—-1, and a;—a;>—-——,
qa 4q a 4q
(2.5.2)

Apavg = Agar g

Remark 2.5.1. For a better understanding we want to discuss the result of the

theorem for N = 2. We have to consider the embedding

[SEEN ~ ..
Hzollvaqu G,al,a2,q

Part (i) says that, if < 6, the “distance” of the spaces is so big that the influence
of the parameters o, oy, and g is too small to affect the embedding.

In part (ii) the spaces come closer, i.e. we have § = 6. Therefore oy is the next
most dominant parameter. But now, in contrast to (i), the relation between ¢ and ¢
is important.

Suppose that ¢ < ¢. Then, if o; < &;, we get the embedding for any «, and a,.
If, on the other hand, a; = &, then the finer tuning is done by a,: the embedding
holds if ay < avy.

Suppose that ¢ > ¢. Now o < @&, is not sufficient. But if the distance between o
and & is greater than %—%, the embedding holds for any oy and &,. If &y —ay = %—%
then we need &, — oy > % - % to prove the embedding. The reason for that is that
in the proof we will need the appearing integrals to be convergent. We showed this

convergence in Lemma 2.5.3.
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Proof. (i) Let 0 < # < # < 1. Then

~ * 5 _ ~ dt
lalg gl = [ 3 ()7 K )}
dt

o R IO ) L I L
1
[ dt
< laloaooel ™ [ i :
1 tHHO=0d)\ Lo (t)d

< [lalAg 50 00|

according to Lemma 2.5.3 (i). Then the result follows from Lemma 2.3.2.
(ii) Firstly, let ¢ = G and a° and &' as in (2.5.1). Then

Jal g g
= [Tl Ko}
1

= /loo{t(? L)~ -y ()~ K(t, a)}q ) {lj(t)aj_dj . -lN(t)aNde}q%.

Because &; — a; > 0 the term Li(#)% ™% - In(t)*N % tends to zero as t — co. So
the last integral is smaller or equal c||a]Ag 0 4[| with ¢ > 0.

Then, if ¢ < ¢, we get with Lemma 2.3.2
Agavg = Agarg = Agar g

Now, let condition (2.5.2) be true. Then, by applying Holder’s inequality with

conjugate exponents % and qﬁé, we find

llal Ag g1 4117 =/ (a0 () K (8,a)} 7 - A&L&l(t)q%
1

(et ([ o)

7 (2.5.3)

Qb

Condition (2.5.2) implies
A g (al—a0) (t)

q9—q

=4(t) 11t (lj(t)&j_o‘j Lita (t)&j+1—o‘j+1 .. lf\‘[N*aN) H’

ol



and qq_ijq (dj - aj) > 1. Consequently, the last integral in (2.5.3) is convergent as we

showed in Lemma 2.5.3 (ii), and the assertion is proved. O

Remark 2.5.2. If we have o; = &, for all ¢ = 1,...,N and ¢ < ¢ in Theorem
2.5.1 (ii), then
Ag.a0.g — Agao g

This follows from Lemma 2.3.2.
Remark 2.5.3. If the couple (Ap, A;) is not ordered, we still have
Apa0,q = Aol g
if a; < @, foralli=1,...,N. This follows directly from the definition of the spaces,
because [;(t) > 1fori=1,...,N and all ¢t > 0.

Next, we state the Reiteration Theorem for logarithmic parameters. Compare |8,
p. 921] and [10, p. 241].

Corollary 2.5.1. Let (Ap, A1) a compatible couple of quasi-Banach spaces. For
i=0,11let0<q <oo,a’,a' € RN, and let Oy # 01. Then, for 3 € RN, n € (0,1),

and 0 < q < 0o, we have

(A9070707f10 ’ A91 70_51 »q1 ) 7775’(1 = A07657q’

where

0= (1—mn)bo +nbh and a=(1- 7])@0 +nal + .

Proof. We apply Corollary 2.4.1 with b;(t) = Asi(t) and d(t) = As(t). Because
Ag <t91*90/\d1_5[o (t)) ~ Az(t), the corollary is proved. O

Now we specify Corollary 2.4.1 choosing b € SV as A\5.

Corollary 2.5.2. Let 0 <r < g<oo. Leta € RN, 6 (0,1), and 1% =120 Then

T

(Lr(Q)a LOO(Q>) = Lp,—&,q(Q)-

0,a,q

Proof. The assertion follows directly from Corollary 2.4.1 by observing that
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Finally, we interpolate generalized Lorentz-Zygmund spaces.
Corollary 2.5.3. Let &' € RN, 0 < p;, qi,q < 00, i = 0,1, such that pg # p1 and let
n € (0,1) and 8 € RYN. Put

1
= 77—1—3 and a=(1-n)a’+na'-p.
p Po b1

Then

(Lpo,«io,qo (), Ly, ara, (Q))W,B7q = Lpaq(92).

Proof. The proof is analogous to the proof of Theorem 2.4.2.

Let » < min(pg,p1) and choose 6; € (0,1) such that p%_ = 1_7,9", 1 = 0,1. Put
0= (1—-n)0+nb and 5 = (1 —n)(—a’) +n(—a') + 3. Observe that p = 1;‘9 and

Qi

Now, by applying Proposition 2.5.2, the Reiteration Theorem (Corollary 2.5.1),
and again Proposition 2.5.2, we get

(Lpo,a0.00 () Ly 61,41 (), 5., = ((Lm Loo)go,~a0,q00 (Lrs Loo)el,fdl,ql)

n,3,q
= (LT7 Loo)

=Lpag
ol pang

Remark 2.5.4. If we put & = 0 in Corollary 2.5.3, then we get
(LPOaQO (Q), Ly, (Q))nﬁ’q = Lp,—B,q(Q)'

If we put 3 = 0 as well, we receive the classical result stated in Theorem 2.1.5 above.
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3 Characterization of Extrapolation

Spaces

3.1 A-Extrapolation
Recall the logarithmic function parameters
Aa(t) = lL(t)™ - In ()™

where & = (o, ..., ay), l1(t) = 1+|logt|, and I;(t) = 1+log(l;—1(t)) fori =2,3,....

Here and in the following sections we will also use functions defined by

)=t () =logt, ..., ;) =log(li_i(t)),
and
N
e =1[n®*,  a=(a,...,ay) €RY,
=1

for all t > 0. There are numbers ¢; > 0 such that, if we restrict the functions ] to

the sets (¢;,00), we have
L) ~5®), k@) ~BEO), ., L2~

and
/\@(2t) ~ AL ().

Definition 3.1.1. Let (Ag, A1) be a compatible couple of quasi-Banach spaces with
Ap— Aj. Let 0 < ¢ < oo, and 0 € (0,1).

(i) Let o > 0 and jjo € N such that 6 + 277 € (0,1). We define A“4y, to be the

o4



oo
space of all a € [ Agig-i , With
J=Jjo

1

[ee] 1
lal A Ag | = (Z 2% a| Ay \q)q < o0
»q * 042 J,q

J=Jjo

if ¢ < 0co. The space A%Ay  is determined by

lal A% Ag o || = sup 277 |a| Ag 423 ool < o0.
JZjo

(ii) Let N €N, (ay,...,ay_q) € RV and ay > 0. We define AN Ag, .

An_1:9

o0
to be the space of all a € () Ag o | .0, +2-7,4 With
j=1 -

1

o0
1 q
lal A Age o o] = (Zz W\\a\Ae,al,...,aN_1+2-j,qHq) < .
j=1

The case ¢ = oo is treated as in (i) above.
(iii) We put

0 — 0 -
A A07q T A97q and A A67a1a'"7a1\]_17q T A67a17'"7a1\7_17q'

Remark 3.1.1. In Theorem 2.5.1 we have seen that, if Ag <— Ay, we have
A97q - Aé,q
for 0 <6 <6<1and

A9,a1,...,

— AH,ozl,...,

AN _2¥N_19 AN _2¥N_159

for ayy_; < @py_q. Therefore,

o0 o0
ﬂ Agio-iq and ﬂ Agay oy 4277 (3.1.1)
J=jo J=n

do not depend on the starting points jo and ji, respectively.
If we use couples (Ap, A1) that are not ordered, the first intersection in (3.1.1) is

different for different jo. Consequently, the outcoming extrapolation spaces depend
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on jo, as we will see in Section 3.3 below. In contrast to that, the monotonicity
in a;_; of the logarithmic spaces (with fixed 6 and ¢) still holds, as we stated in
Remark 2.5.3.

The following lemma contains two calculations which we will need in the proof of

the next theorem.
Lemma 3.1.1. Let 0 < ¢ < o0.

(i) Let 5> 0. Then

. .
§ : ij%q7t2_3q ~ %
J=Jo

fort e (1,00).

(ii) Let N € N and » > 0. Then
S oI ()T~ Iy ()
j=1

fort e (1,00).

Proof. The proof of (i) is taken from [5, p.237] although the same equivalence is
proven in a different way in |18, pp. 81-82|. Choosing ¢t > 1 and j = k + [logt] we

get
e v i t ok
Z ij%qftQ*Jq — 27[logt]%q Z 2—k%q—m2 q
J=jo k=jo—[logt]
[e.°]
~ 1 Z Q—k%q—Q*kq
k=jo—[logt]
~ 7,
The last sum is equivalent to 1 because
[log t]—jo oo
2=4 < Z 2k%q—2kq +Z2—k’%q—2’kq
k=1 k=0
[e.e] oo
k
< Z2k%q72 a4 22716%(1 <e,
k=1 k=0

where c is independent of t.
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(ii) Choosing t > 1 and j = k + [I3, o(t)] we get

o0 fo%e) .
Z 2—Jxa l}k\;(t)frjq ~ 2 N2> Z 9—ksq l}kv(t)*Q_kZ_lNﬂLQ(t)q
J=1 k=1—[l3 4o (1)]

[e.e]

* — 72_1“
S IO R D DI el (ORI B
k=1—[I% o (t)]

(e 9]

=Gy 2P
kzl*[l}k\l+2(t)]

~ Ly ()7
The last sum is the same one as in the proof of (i) and therefore equivalent to 1. [

Theorem 3.1.1. Let (Ap, A1) be a compatible couple of quasi-Banach spaces with
Ag— Ay, Let 0 < g < o0 and 6§ € (0,1).

(i) Let « > 0. Then
AaAeyq = A@}th.

(i) Let NeEN, N >2 a=(ay,...,ay_,) € RN and ay, > 0. Then

[e%
N =
A Aavalv-“va]\/_l:q AH,O(I,...,O(N_l,GfN,Q'

Proof. (i) The proof is taken from [5]. We assume ¢ < co. The case ¢ = oo follows

by the same arguments.
For a = 0 there is nothing to show. Let a > 0. Using the definitions of the inter-

polation, logarithmic interpolation, and extrapolation methods and Lemma 3.1.1 (i)

with 2 = a we get

[e.e] o0
lal A% Ag |7 = Y 27701 ) 27T AR (2™, a)t
J=jo m=1
o0 [e.e] )
= 2K (M a)1 )y 2mirapTm2
m=1 Jj=Jjo

)
~ 3 2y (am )
m=1

= [la[Ag,a.q]l"
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(ii) Again, for ap = 0 there is nothing to prove. Let aj, > 0. We use the

equivalence of [;(2") and [}(t) and Lemma 3.1.1 (ii) with s = a to get

)
Z 27JaNq||a‘A9,a1,...,aN71+2*j,q’ e
Jj=1

- Z —r Z 27y () Ly (27) (O 2 (2 )

_ 22 m@q)\ (2m qK 2m 22 ]aquN )-2*jq

m=1
oo
~ ) 27N (27) T N (27) TN K (27, a)
m=1

||a’A0,a1,...,o¢N_l,aN,q||-
0

Definition 3.1.2. Let (Ag, A1) be a compatible couple of quasi-Banach spaces with
Ag — Aj. Let 0 < g < o0, 6 € (0,1), and jo € N such that 6 + 277 € (0, 1) for all
Jj >jo- Let N €N, and & = (ay,...,ay) with ¢, >0foralli—1 ,N.

We define A%Ay , to be the space consisting of all a € ﬂ A9+2 i,g With
J=jo

_ i S q
lal A% Ag o) = (Z As(22) Q||a|A9+2j,q||q> < o0,

J=Jo
Example 3.1.1. We choose N =2 and & = (ay, ay). Then

)\& (221') _ (1 + log 221)041 (1 + log(l + 10g 22j))a2
~ 2791 (1 4 log 27)*2

~ Qjale‘Q.
So, we have
e’} 1
. q
la A 122) Ag | ~ (Z 2770 el HaAeHj,qu)
J=Jjo

Choosing N = 1 we recover Definition 3.1.1 (i).

Theorem 3.1.2. Let (Ap, A1) be a compatible couple of quasi-Banach spaces with
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Ag — Aq. Let q, 0, N, and & as in the above definition. Then
A‘S‘Aqu = Apaq-

Proof. We prove the theorem by induction. For N = 1 the assertion is true, as
we proved in Theorem 3.1.1 (i). Assume that the assertion holds for N € N. If
a1 > 0, then, using Theorem 3.1.1 (ii), we can write

lalAp oyl

~ Ha|AaN+1Ae’al,m’aNﬂ”q

o0

—k
~ Zz aN+1qHa’AG,al,...,aN71,ozN-i—Q*k,qHq
k=1
0o

o
~ YRt 3T gy ()0 (21) O 0] Ay |
k=1 J=Jjo

o0 o0
~ Y gy ()Tt (27) O (Z g ke lN-1<2j>2"“q) lal Agsa-s, 417
Jj=Jo k=1
0 . . . .
3 2 (20) Oy (29) N Ly (29) N o] Ay 1
J=jo
For the sum in the big parenthesis we used Lemma 3.1.1 (put I3(j) = 27 in case
N =1).
If ay =0, then

||a‘A97a1:-~~7aN+1quq ~ ”a‘A&ap-n:aNﬂ”q

[ee]
~ Zg—jalq l1(2j)—a2q .. 'lN—1(2j)_°‘quN(2j)_0'q lla Ag_a-s o]1%-
=1

O

In Definition 3.1.1 we deal with interpolation spaces Ay, 5-; .. In applications we
need g depending on j. Now we show that this is possible and leads to the same

logarithmic interpolation spaces.

Theorem 3.1.3. Let Ay and Ay be quasi-Banach spaces with Ay — Ai. Let 0 <
g<o00,0<6<1,7r>0,and let jo = jo(0) € N such that, for all j > jo, we have
0+277€(0,1). Let N €N and & = (ay,...,ay) with a; >0 for alli =1,...,N.
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Put % = % + % Then
o0 1
_ j _ q
lal A% g ]| ~ (Z Aa(22) 71 ||a|Ae+2j,5juq) .

J=Jo

Proof. Because s; < q we get for all j > jo

s . 1/q
lla]Agia-i 4ll = <Z 2—mq(«9+2—J)K(2m’ a)q>
m=1

s i 1/s;
< (Z gm0+ ”K@m,a)sﬂ') = llalAgya-3.4, I
m=1

This implies

1

_ e . . . q
la|A% g || < (Z 20 [ (27) 030 .y (29) O ||G|A0+2J‘,stq> .

J=Jjo

Conversely, using Holder’s inequality, we get

s » 1/s;
”a|A0+2—J‘,st = (Z 9—ms;(0+2 J)K(2m’a)8j>
m=1

_ (i 27m5j(«9+2_j_1)K(2m’a)sj . 2m5j(2_j2_j_1)> 5
m=1
1

o0
727
< ”CI|A9+2—]'—17(1H (Z 2—mr/2) 2
m=1

< cl|afAgsz-s-1 4ll-

1

The function [1(27)~% --- Iy _1(27)~%~ is equivalent to a slowly varying function b.

Theorem 1.4.1 (ii) implies b(j — 1) = b(]j;lj) < cj%'lb(j). With that and with the
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above estimate we get

[o¢]
D 27ty (27) 70y (27) 7N [la] Agyai |17
J=Jo
< ey 27INa(20) 70y (27) 70N [la] Agyo-im1 |7
J=Jo
o0 .
<c Z 2= U= Daadp(j — 1) lal Aga-i qlI*

Jj=jo+1

. o0
§c2“1q$;1pj% D 27 () (27) OV [al Agga |
J2730

= Clla|A% Ag 4.

Jj=jo+1

3.2 Y-Extrapolation

Definition 3.2.1. Let (Ag, A1) be a compatible couple of quasi-Banach spaces with
Ay — A;. Let 0<f < 1and 0 < g < .

(i) Let o < 0 and jo € N such that § — 27790 € (0,1). We let %Ay, be the space
(&)

of all a € Ay with a = ) a; (convergence in A1) and a; € Ag_y-; , such that
J=jo

1

o
(Z 2—jaquaj\A92_j,qu) ' < . (3.2.1)

J=Jo
We put
(') 1
—a a
a2 Ag | = mf<§j 2 Mnajma_gj,qnq) |
J=Jjo

where the infimum is taken over all decompositions with (3.2.1). In the case

q = 00, the definition is modified in the usual way.

(ii) Let N e N, N > 2, ag,...,ay_; €R, and apy < 0. We let XN Ag,

aAn_1:9

o0
be the space of all a € Ay with a = )~ a; (convergence in A;) and a; €
j=1
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such that

0,00 .0 gy _1—279 g
00 1
—q q
(275l gy 2sall) <00 (322
j=1
We put
> a
JalSoN Agor o gl = int (Z 2—”N4|aj|Ae,a1,.u,aNQ,QN1_2j,q||Q) ,
j=1

where the infimum is taken over all decompositions with (3.2.2). If ¢ = oo, use

the usual modification.
(iii) We put
EOA97q = A97q and ZOA€7a17"'7aN_17q = A67a17"'7a]\]_17q'
Theorem 3.2.1. Let (Ap, A1) be a compatible couple of quasi-Banach spaces with
Ao — Ay. Let 0 < g < oo, and 6 € (0,1).

(i) Let « < 0. Then
EaA07q = A07a7q‘

(i) Let Ne N, N >2, aq,...,an_4 €R, and apy < 0. Then
EaNAezalz"'zaN_lvq - Aevalw"’a[\]?q'

Proof. (i) The proof is taken from [4, pp. 69-71]. We use the J-Method of Real

Interpolation. For given a € %Ay, and ¢ > 0 we can choose a representation
o)

a= ) aj with a; € Ay_5-; , such that

Jj=jo

oo
D277 aglAg_y-s |7 < (1+€)|[al=* Ag g%, (3.2.3)
J=jo
o
using Definition 3.2.1. Now we decompose a; = Zl aj’, j = jo, such that aJ* € Ag
m=

and -
> 2O g2 af) < (1 €)l|ag| Ag_g-s 4l (3.2.4)

m=1

62



see the definition of the J-method.

Let ¢; be the constant in the triangle inequality of A; (j = 0,1). We put ¢ =
max(co, c1) and let r be defined by (2¢)” = 2. We can assume that c is large, so that
r < q. Let s be the number with % + % = % Now we use Holder’s inequality to get

<Z J(2™, al)’ > < <Z 2—m¢I(9—2*7)—jaq!](2m, a}n)q> ! (Z 2m8(9—21)+jas> ‘
J=Jo J=Jo J=Jjo
0o 1
~ 2m0ma <Z 2fmq(97273)7jaqj(2m’ a?]jn)q) q7
J=Jo

(3.2.5)

where the last equivalence follows from Lemma 3.1.1 (i).
The last sum in (3.2.5) is finite due to the choice of the al", see (3.2.3) and (3.2.4).
oo
Since J(2™, ) is a c-norm, it follows from (3.2.5) and Lemma 1.2.2 that ™ := >~ a7’

J=jo
is convergent in Agp and

J2m m (Z‘]2m mr)

J=Jo

< C2m9ma (Z 2—mq(0—2_]')—joqu(Qm7 a;n)q) 4

J=Jjo

o0
Therefore we have a = ) a™ with

m=1

oo
lalAg.aqll? < Y 2701 +log 2™) "9 (27, a™)

m=1

o0
~ Y oMby ed g (gm gy

m=1

<Cq22 JON]ZQ mq(6—277) (2m7 al")?

J=Jo

<Cl+¢) Z 2799 |aj| Ag_gi 4|
J=jo

< CU(1+¢€)°[|al2" Ag,q .

To prove the converse embedding we take a € Ag 4 and choose a representation
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a= Y am with a,, € Ag such that > 27™%(1 4 1og 2™)=29.J(2™, a,,)9 < oo. If

m=1 m=1
we put
2i—jo+1_1
ol = E am
m=27—Jo

. S ¥
for j > jo, then we get o/ € Ayg_9-; ,and a = ) a’.
J=jo
Now

o0
la|= Ap g1 < D 277|a[Ag 5 4

J=jo
) 27—jo+l_1

< Z 9—jog Z 9~ ma0=2"") y(om q,.)2
J=jo m=27"Jo

)
~ 3 ol mad g (9 g, ).
m=1

Now, taking the infimum over all admitted representations we see that Ag,, —
XA 4.

(ii) The argumentation is analogous to (i). Let a € XN Ag o . o g Fore>0

N—
o0
we can choose a representation a = ) a; with a; € Ay g reonsllpy iy =270 0g such
Jj=jo o

that

o0
Y279 aslAg 0, oy oy, —20glT S (L) aZ N Aga,,ay .l
j=1

o0
Now we decompose a; = > aj’, j = jo, such that aj* € Agp and
m=1

S 2T (M) Iy ()N Iy (27) (v 2 g (am gy
m=1

< (1 + 5) Haj|A€7a1,...704N_2,O¢N_1—2—j,q||q'

We define 7 and s as in the proof of (i). We proceed as in (i), using Lemma 3.1.1 (ii)
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o0 o0
mo.__ m g — m
to get that a™ := jzj aj' is convergent and a = mzl a™. Then
=Jo =

lalAg.a,,...an.qll*

o0
< Y ammbagy(emy Ty (2m) TN T2, o™
m=1

IN

[ee) o0
C Z 2—ja1\1‘1 Z 2_m9ql1(2m)—alq . ZN71(2m)_(aN_1_2_])q J(Qm, agﬂ)q
J=Jo m=1
e .
<C+e) > 27 lajlAga, oy —2-1qll°
J=jo
< O(L+e)*al= Ag o,y all™

o0

Conversely, let a € A9’041’~~-’04N’f1 and choose a representation a = Y a,, with
m=1

00
am € Ag such that S 2704 [ (2m)=d | [ (2M) N9 J(2™, a,,)7 < co. To adapt
m=1

the proof of (i) to the case of (ii), we define mx(¢) for every N € N and ¢t > 0 by
)=t mt)=2t ..., wy(t) =2~
Note, that (lN(Qt)) ~ t for all N € N. Now, we put

7TN+1(j—j0+1)—7rN+1(0)

al = E am

m:7rN+1(j—j0)—7rN+1(0)+1

. S .
for j > jo. Then we get @’ € Ag o o0  —2-igand a= > a’. Then,

g=jo
||a|ZaNA070¢17---7O‘1\],17qHq
00
< Z QijaNqHa’]’AG,al,.A.,aN7172*j,q||q
J=jo
00 .
< Z 9—Jong Z 270 ] (M) TNy (2M) TN 2 (9™ g )
J=jo m as above

- Z 2_mq0 ll <2m)_061q e ZN(Qm)_aNq J(2m7 am)q'
m=1
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To change the order of the summation, we have to replace 2/ by Ix(2™). Then
In_1(2m)"2772 274N ~ ¢y (2™) 2N, which is what we used in the above calcu-
lation. Now, by taking the infimum over all admitted representations, the result
follows. O

Definition 3.2.2. Let (Ag, A1) be a compatible couple of quasi-Banach spaces with
Ag — Aj. Let 0 < g < o0, 6 € (0,1), and jo € N such that  — 277 € (0,1) for all
Jj>Jo. Let Ne N and & = (¢,...,ay) with o; <Oforalli=1,...,N.

We define %Ay, to be the space consisting of all a € A; with i‘é a; and a; €

J=jo
Ag_o9-i 4 such that

1

q
7) < oo.

a5 Ag | := mf<§j M (2) " a4y 5 s,

J=Jo

(Z A (22) gl g5,

J=Jjo

We put

Q=

)

Theorem 3.2.2. Let (Ap, A1) be a compatible couple of quasi-Banach spaces with
Ag — Aq. Let q, 0, N, and & as in the above definition. Then

Ea AG»q = Ae’a7q .

Proof. We prove the theorem by induction. For N = 1 the assertion is true, as
we proved in Theorem 3.2.1 (i). Assume that the assertion holds for N € N
and let ay,; > 0. The proof is similar to the proof of Theorem 3.2.1. Let

a € Aga,.. = EO‘N+1A97a17.._7O¢N7q and ¢ > 0. We choose a representation

SO 4109

o0
a = Y ag such that
k=1

o
ZQ—kaNHq ”ak‘Aaal,.._,aN—T’“,qu <(1+4¢) Ha‘ZaNHAo,al,...,aN,q q
k=1
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(e.) .
Now, for every k, we choose a representation ap = »_ ai such that
Jj=jo

o0
i o R, ‘
ZQ JOad 1 (29) 724 .y (27)(en 2 )q||a§€|A9_27qu||q
J=Jo
< (1 + 8) ||a’k’A0,a1,...,aN—2*k,qHq

< o1+ &) [|ag @27 44 |9,

where we used the induction hypothesis. Now, as in the proof of Theorem 3.2.1, let ¢
denote the constant in the quasi-triangle inequality such that r, defined by (2¢)" = 2,
is smaller than g. Define s > 0 by % + % = % Then, by Holder’s Inequality,

[e's) 1
(Zua;mm-j,q\v)
k=1

00 1
(Z 271y (27) 700 Iy (27) 7w R R Hai}lAe_zj,qu) -
k=1

IN

1

e¢]
(C e naess iy gowns)’
k=1

< c iy ll(2j)°‘2 S ZN(Qj)O‘N+1.

1

\q)q
)

(o9}
<Z 97Id ] (27) 720 ... lN_l(Qj)_(O‘N_Qik)q 9~ kani19 ||a‘£’A0_2—j7q
k=1

. oo .
where we applied Lemma 3.1.1 (ii). Now put o’ := kzl aj.. Then

la?| Ag 55 4l

[e'e) 1
< <Z’ai|A92—f,q||T>
k=1

< I I (2]')042 . lN(Qj)O‘N+1.
1

(o)
(Z 271Ny (27) 7 Iy (27) (o2 e g ha raf;me_w,qn") .
k=1
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It follows that a = Y @’ and
J=jo

||a‘z(o¢17,..,ozN+1)A9’qHq

(o.¢]
Z 9—joq ll(2j)—a2q e lN(Qj)_aN+lq ||CLj|A9_27j7qu

<
J=Jjo
<o Y Y eI (@) by () g R o] 4y |
Jj=jo k=1
> k
< (1) Y 2w fay B2 g |9
k=1
< c(14)* a3+ A, oyl

S cHa”Aeyalw"va]\u'_lvq”q'
o0
Now, we prove the converse inequality. Let a € Z(al""’“NH)Ag,q. Let a = ) a; be
J=Jo
a decomposition such that
o0
D 27Ny ()70 Uy (29) 7 | Ag g | < 0.
J=Jo
We use 7y from the proof of Theorem 3.2.1 (ii) and put
7rN+1(k)—7rN+1(O)+jo—1
ak = Z CLj.
j:ﬂN+1(k_1)_7rN+1(0)+j0
Then,
H(I|A97a1,...,a1\,+1,q a
< clla|EN1Ag oo all?
(o]
S B L Y T
k=1
o ) A
< 022_kaN+1q Z 277N [ (27) 72 . [y (27) " (en T2 e llaj|Ag_o—s 4|7
k=1 J as above

[ee]
=c Y 27Ny ()70 ()TN0 [|ay] Ag_p-s
J=Jjo

|l1
7q )
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where we used 27Nty 1 (2)27" ~ cly(29)"N+19, when changing the sum-
mation order by putting 2 = I5(27). Now, take the infimum and the proof is
complete. O

The next theorem is the ¥-counterpart of Theorem 3.1.3. It is a generalization of
[4, Th. 2.4].

Theorem 3.2.3. Let Ag and Ay be a compatible couple of quasi-Banach spaces with
Ag— Ay, Let 0 < g< 00, 0< 0 <1, r >0, and let jo = jo(0) € N such that, for
all § > jo, we have § — 279 € (0,1). Let N € N and & = (o, ..., ay) with o; <0

foralli=1,...,N. Put u% = % — T% Then the space X% Ag 4 consists of all a € Ay

o
that have a representation a = Y a; (convergence in Ay) such that
J=jo

o0 .
> Aal2”) llajlAg g 4,17 < oo
J=jo

The infimum of this expression, taken over all admissible representations, is an equiv-

alent norm in Z&Ag’q.

_ (o]
Proof. Let a € ¥%Ay, with a = ) aj, aj € Ayg_9-; 4, such that
J=Jo

(o]
D 27 (27) 70y (2) TN lag| Ag_gs ]|f < oo
J=Jo

Because g < u;, we have [la;j|Ag_o-5 4[| < [laj|Ag_2-5 4ll- So, aj € Ag_5-5,; and

oo
Z 9—jaq ll(Qj)—agq e lel(Qj)—aNq H%’|A0—2fj,uj\|q < 0.
J=Jo
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Now we prove the converse inequality. For j > jo and a; € A9,2_j7uj holds

1

= —m(f—2"71 m B
||ajrAH-j-1,qr:(Zz 0-27"a (g ,am)

m=1
— U i — i 72
< (3o s ) (S e
m=1 m=1
0 1
_1 r2J
~llaslo 10,1 3 27
m=1
< cllaj|Ag_o-i u,ll-
As in Theorem 3.1.3, this implies
0S¥ Ag || < C inf S 27300 1y (20) 7020 1y 3 (29)~NT 5| Ag_gs . [0
Jj=Jjo
O

3.3 Variations

We now want to examine some variations of the methods used above. To be precise,
we will take a pair (Ag, A1) that is not necessarily ordered and do the approach to
the parameter from the other side. We do not get the same results, but we can
characterize the outcoming extrapolation spaces. We mix ideas from [4] and [18].
The latter paper deals with a more general setting. To avoid confusion please note
that we do not use the same notation as in [18], see Remark 3.3.1 below.

In this section, we will only give a description of the A method. Analogous results

can be proved for the ¥ method, see [18].

Definition 3.3.1. Let (Ag, A1) be a compatible pair of quasi-Banach spaces. Let
0<g<oo,0€(0,1), and o > 0.
(i) Let jo € N such that 6 + 2770 € (0,1). We define A% Agt 4 to be the space of

oo
alla € (] Agyg-i, with
J=jo

1

o ) q
a2 Agy ol = (Z 2—M||a|A6+2j,q||q> <o,

J=Jo
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(i) Analogously, for jo € N with § — 2770 € (0,1), we let A Ag— 4 be the space of

o0
alla € (] Ag_g-i 4 with
J=jo

1

a2 Ap ]l = (Z waqnam@w,qnq) < o,

J=Jjo

Remark 3.3.1. Our A-methods are special cases of the 6(9-methods in [18], more

precisely,
A5, Apeqg = 5y (M(n) Ay g).

where n=0+279, 3 =0+ 2770 and M(n) = (n— 6)* and

A2 Ag_ g = 05T (M(n)Ayy),

where n =0 —277 =0 2790 and M(n) = (6 — n)“.
The following lemma contains an elementary calculation which we will need in the
proof of the next theorem.

Lemma 3.3.1. Let o >0 and 0 < g < o0. Then

> . .
D gt g0 (3.3.1)
Jj=jo
fort e (1,00).

Proof. The proof is taken from [18, pp.82-83|. It holds

o
9 Joaqgtg2™0 § :Q—jocq+t2ﬂq
J=Jo
0 .
— 2—j0aq § :Q—kaq+tq2_k’2_10
k=0
o0
_ 9—joag+tg2~90 Z g—kag+tq2=70(27F 1)
k=0
oo
< 2—joaq2tq2_j0 2 :2—kaq
k=0

—Jo
< 292
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where ¢ does not depend on t. O

Theorem 3.3.1. Let (Ao, A1) be a compatible couple of quasi-Banach spaces. Let
0<g<oo,0€(0,1),and o > 0.

(i) Let jo € N such that 0 + 277 € (0,1). Then

A?o A9+,q - A9+2—J’0,q N AG,a,q'

(ii) For jo € N with  — 277 € (0,1), we have

A‘?OAQ_VQ = A9727j07q N Ae,a,q-
Proof. With the help of Lemma 3.3.1, the proof follows exactly the proof of Theorem
3.1.1 (i). O

If we now additionally assume that Ay < Aj, then we get the following result (see
Theorem 3.1.1 and Remark 3.1.1).

Corollary 3.3.1. Let (Ao, A1) with Ag — Aj. Then,
A Ao+g = Apayg

and

e} — .
A] Aafyq - A0_2_J07q'

0

3.4 Applications to concrete function spaces

In this section we want to apply the above extrapolation results to generalized
Lorentz-Zygmund spaces. We extend the assertions from [4, pp. 74-79].

At first, we characterize spaces where ¢ = p. For that we apply Theorems 3.1.3 and
3.2.3 to get a characterization by Lebesgue spaces. Secondly, we treat the general

case, where the characterization is made with Lorentz spaces.

Corollary 3.4.1. Let 2 C R™ with finite Lebesque measure. Let 0 < p < oo and

let jo = jo(p) € N such that, for all j > jo, we have = = 1 — 1> 0. Put
pi P n2J

1.1 1

277 =y T
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(i) Leta= (ay,...

yay) with o, <0,1=1,...

,N. Then

1/p
[ f|Lp,al ||N<Z/\ (2%)7 | fILyes (2 )II”) -

J=Jo

(i) Let & = (ay,...,

ay) witha; >0, i=1,...

,N. Then L, 5(Q2) consists of all

measurable functions f on  which can be represented as

f= Zf]

where fj € L (Q) such that

J=jo

(Z Ao (22)7 1 1L, (9 >H”>1/p < o0,

J=Jo

The infimum of the last expression taken over all admissible representations is

an equivalent quasi-norm in Ly 5(82).

Proof. Let 0 < r < p and let 6 = }%.
Applying Corollary 2.5.3 gives

Because || < oo, we have Lo (€2) — L.(2).

(LOO(Q)v LT(Q))G,fd,p = Lp,&(ﬂ)'

-1, 1 1 .1 15
=, 1 757 and T T it holds

and

(Loo (), L (2))

0—2-3.p

=1L, (Q).

Py’

If o; <0 for all 7, we apply Theorems 3.1.2 and 3.1.3 and get

1/p
[ f|Lp,a(S2 IIN<Z)‘ (2¥ )" IfIL, 75 (2 )Hp> :

J=Jo

We may assume that 7 is smaller that n, which implies p;’ < p% and, consequently,

I ILyes (DN < Nf 1Ly (D]

72971 > n2J. That means p,° 7' > p% and we get | f|L
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Now, (i) follows.
If a; > 0, it follows from Theorems 3.2.2 and 3.2.3 that L, 5(£2) consists of all f

with a representation f = Z fj where f; € L gy (Q) such that
j=jo

(Z 2a(22) 1L (0 >up)”p < o0,

J=Jo

As in the situation of (i), we can show that, if we replace pij by pi, the quasi-norms

are equivalent. O

Example 3.4.1. (i) We consider N = 1 and let @ = (a)). Then we have A5 (22j) ~
27 and, if a < 0,

[e.9]

' 1/p
1Ly (log L)a(Q)] ~ (Z 29 | f|L ¢, m)up)

Jj=Jo

If @ < 0 we get an analogous result from the second part of Corollary 3.4.1. This is
the result from [4, pp. 74,75].
(ii) Next, we consider N = 2 and let @ = (0, ) with « < 0. Then A5 (22j) ~ e

It follows
o0 1/p
L1 Lpo0a(@)] ~ (Z 5 1Ly, (Q)Ilp)
7=Jo

An analogous result holds for o > 0.

Corollary 3.4.2. Let Q C R™ with finite Lebesgue measure. Let 0 < p < oo, 0 <
1 .
q < o0, and let jo = jo(p) € N such that, for all j > jo, we have —~ := % —277>0.
p J

1 —7
t _ 7_'_ J

(i) Leta = (ay,...,ap) witha; <0,i=1,...,N. Then
- 27\ q 1/
11 Lpag ()] ~ (Z A (22 |f|Lpuj,q<sz>|rQ) .
7=Jo

(i) Let @ = (ay,...,apy) with a; > 0, i =1,...,N. Then Lpaq(Q) consists of

all measurable functions f on €1 that can be represented as f = E fj where
J=jo
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fj € Ly () such that

P q
©° : 1/q
J
(30 20 iy ) <o
J=Jjo
The infimum of the last expression taken over all admissible representations is
a equivalent quasi-norm in Ly g 4(£2).

Proof. Take 0 < r < min(1,p,q) and let § = Z. Applying Corollary 2.5.3, we get

P
(Loo(9), LT(Q))Q,—a,q = Lpaq(Q)
Putﬁ ;—i—réjandplﬁ_:;—réj Then
(Loo(€2), LT(Q))0+2*j,q = L ()
and

(LOO(Q)7 LT(Q))Q,Q—J'H - Lp"'j ’q(Q).

1 1 1—r
Because — — — = — tends to zero as j — oo, it holds
pﬁ] pﬂj roJ

1Ly (] = </O|Q [#57 £(1))" d:)

- [ 3
< sup {tlm }</ [tp‘l‘j f*(t)]q dt) /
0<t< |9 0 t
1—

< Q2 [ | Lps o (D]
< M| fILyps ()]

Analogously, we get || f| Ly ()| < M| f|Lym o(Q)]]-
Let j1 > jo with 1 < r2/t. Then, we have

1 1 . 1 1_7“2j1_1 0 )
o T~ g g s 0 U o)

So, similarly as above, we can prove
11 Lps (DN < M|l FILym545 o (Q)]

and
”f|L i1t (Q)H < lml||f‘l‘p”]7q(n)”
p q
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Now, we apply Theorem 3.1.2 (in the case @ < 0) and Theorem 3.2.2 (in the case
@ > 0) to the couple (Loo(Q2), Lr(2)). This gives us a characterization with spaces
Ly () (in the case & < 0) and L, ,(©2) (in the case & > 0). As in the proof of
Corollary 3.4.1 the result follows with the help of the above estimates. O

Example 3.4.2. (i) Let N =1 and a = (a). If @ < 0 we get

o0

1112 paliog Do) ~ (3

4 1/q
2ﬂaquf\Lpu]-,q<n>uq) .
J=Jo

This is the result from [4, pp. 77].
(ii) Let N =2 and & = (0, «) with @ < 0 . Then it follows

o0 1/q
11 L@ ~ (Z jo Hf|Lpuj,q<muq) |

J=Jjo
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