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ABSTRACT

The paper treats the problem of detecting a structural damage with respect to

location and extent from measured vibration test data. The method is based upon a

mathematical model representing the undamaged vibrating structure and a local

description of the damage, e.g. a finite element for a cracked beam.

A special chapter is devoted to the problem of modeling errors and their influence to

damage localization accuracy. An approach is presented how to get reliable results also

in this case.

The concept of inverse sensitivity equations is used which can be based on any type

of data: e.g. modal data, FRFs, time series or a combination of them.

The resulting inverse problem usually is ill-posed, so that special attention must be

paid to its accurate solution. The application to damage detection problems requires the

reduction of a large set of damage parameter candidates to a small subset of one or two

parameters really describing the local change of the system. An orthogonalization

strategy is given to reduce the parameter set. The method is applied to laboratory

structures in the frequency domain using FRFs and in the time domain. The results show

that the algorithm is able to detect the damage.
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5.1.  DAMAGE IN A RECTANGULAR ALUMINUM PLATE

5.1.1.  System Description, Model and Measurement

As an application for the described damage detection procedure, a rectangular

aluminum plate (size 300 600 6× × mm ) is investigated. Based on the measured weight,

the density is calculated to ρ = 2800 3kg m/ . As a first guess of the Young’s modulus

E MPa= 70 000  is used. The damage is represented by two orthogonal slots, each

having a length of ≈ 70 mm  and a width of ≈ 4 mm . The location of the damage and

the 18 nodes where the system is excited by an impact hammer are shown in fig. 3. The

acceleration pick-up is located at node no. 1. The 18 corresponding frequency response
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functions (FRF) contain the first 10 modes in the measured frequency range. Free

boundary conditions are obtained by fixing the structure with very soft springs. A

comparison of the measured undamaged and damaged system is given in fig. 4. The

shift of eigenfrequencies due to the damage are in a range of about 1 % to 2.5 %.

The FE model consists of flat shell elements (plate elements) with nine nodes and

three dofs per node. Using a FE model discretized by 3 6 18× =  elements the difference

between measured and analytical eigenvalues for the undamaged case is minimized by

global updating of the Young’s modulus. This leads to a value of E MPa≈ 67 000  and a

maximum difference in frequency of ≈ 4 5. %. For a FE model discretized by 9 18×

elements (or even more) the remaining maximum difference of the eigenfrequencies

after updating the Young’s modulus is still ≈ 3 % . Besides the fact of measurement

errors, another explanation for these deviations is that the real plate is not exactly flat.

Despite of the shown inaccuracy and with respect to computing time the flat plate

FE model consisting of 18 elements (fig. 3) shall be further used as original model. The

corresponding eigenvalues and mode shapes are shown in fig. 5. The difference between

the analytical ( )3 6×  and measured FRFs can be seen from fig. 6. It shall be noted that

the deviations due to the incorrect model are of the same order as the deviations

between damaged and undamaged system!

5.2. DETECTION OF CRACKS IN A BEAM STRUCTURE

5.2.1. Description of the system, Modelling and Measurement

This is an example for a localization in the time domain. Fig. 14 shows the T-like

frame consisting of two welded straight aluminum bars under free-free boundary

conditions realized by a soft spring. The system was excited by means of an impulse

hammer at node 9 and the system responses were measured by means of 3 acceleration

sensors at nodes no. 1 and 11 (y-direction both) and node no. 20 (x-direction).
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Figure 14:  Test structure and nodes of the FE model

The system is modelled by means of 19 finite Timoshenko beam elements and 3

lumped masses representing the sensors. The welded connection of the two beams must

be considered by higher stiffnesses than the normal beam elements between the nodal

points 5, 6, 7 and 12 (see fig. 14). To reduce calculation time, modal reduction is used.

20 modes (including the rigid body modes)  were taken into account. Two sharp crack-

like notches were introduced by means of wire erosion. The equations of motion remain

linear because the cracks do not close (closing cracks are treated e.g. in [23,25]).

The crack model describes the relation between the stiffness reduction and crack

depth a and crack position b in the element and is formulated as special finite beam

element (fig. 15). The main idea [27-29] is based on principles of the linear-elastic

fracture mechanics connecting the additional compliance of the element due to the

damage via Castigliano’s theorem to the decrease of elastic strain energy which is

expressed in terms of the stress intensity factors [36].

5.2.2. Localization with an updated model

5.2.3. Damage localization from inaccurate models


